Question

In: Statistics and Probability

Suppose X is normally distributed with a mean of 100 and a variance of 121. Suppose...

Suppose X is normally distributed with a mean of 100 and a variance of 121. Suppose a sample of size 70 is collected and the sample mean calculated. Answer the following. Enter your final answers in the boxes below. Show ALL working by uploading your handwritten working for this question to Laulima Dropbox within 15 minutes of completing your exam. Correct answers without working shown will not receive full credit. Note that writing Excel functions does NOT qualify as showing working. a) (3) Calculate the probability the sample mean is less than 103. In your working, draw a diagram showing the probability you are calculating. b) (2) Would your methodology from (a) be valid if X instead followed a Binomial distribution? Explain why or why not.

Solutions

Expert Solution

a) We are given the underlying distribution here as:

a) For a sample size of n = 70, using the Central limit theorem, we obtain the distribution of sample mean here as:

The probability that the sample mean is less than 103 is computed here as:

Converting it to a standard normal variable, we get here:

Getting it from the standard normal tables, we get here:

Therefore 0.9887 is the required probability here.

This could be put in a graph form as:

b) Yes, even if the underlying distribution was a binomial distribution, the above methodology would have been valid. This is because Central limit theorem holds for any underlying distribution for a sample size of greater than or equal to 30. As 70 > 30 here, therefore yes above methodology would still have been valid here.


Related Solutions

Given a normally distributed population with a mean of 100 and a variance of 400, find...
Given a normally distributed population with a mean of 100 and a variance of 400, find the following probabilities for a sample mean for 16 individuals. (X for a, b, c is X bar) a) P(X≥100) b) P(X≤110) c) P(96≤X≤108)
Suppose that X is normally distributed with mean 0 and unknown variance σ^2. . Then x^2/σ^2...
Suppose that X is normally distributed with mean 0 and unknown variance σ^2. . Then x^2/σ^2 has a χ^2 1with 1 degree of freedom. Find a) 95% confidence interval for σ2 (b) 95% upper confidence limit for σ2 (c) 95% lower confidence limit for σ2
Suppose that the IQ of adults is normally distributed with a mean of 100 and standard...
Suppose that the IQ of adults is normally distributed with a mean of 100 and standard deviation of 15. (a) What IQ score distinguishes the highest 10%? (b) What is the probability that a randomly selected person has an IQ score between 91 and 118? (c) Suppose people with IQ scores above 125 are eligible to join a high-IQ club. Show that approximately 4.78% of people have an IQ score high enough to be admitted to this particular club. (d)...
Suppose that the IQ of adults is normally distributed with a mean of 100 and standard...
Suppose that the IQ of adults is normally distributed with a mean of 100 and standard deviation of 15. not sure with current solution posted, personally it wasn't clear step by step working. I get lost with some values that he gets ( not sure where he gets them ) here's the question: To get full marks for the following questions you need to convert the question from words to a mathematical expression (i.e. use mathematical notation), defining your random...
A random variable X is normally distributed with a mean of 1 and variance 4. Find...
A random variable X is normally distributed with a mean of 1 and variance 4. Find a) The probability that a randomly selected score from this distribution is less than 3. a.)Sketch a normal curve and shade out the region. b) The probability that a score selected at random from this distribution lies between 2 and 5. Sketch a normal curve and shade out the region c) The probability that a score selected at random from this distribution is greater...
Suppose the heights of students are normally distributed with mean 172 and variance 9. a) Randomly...
Suppose the heights of students are normally distributed with mean 172 and variance 9. a) Randomly pick two students. What's the probability that the first student is taller than the second student? b) Randomly pick two students. What's the probability their average height is larger than 175?
Suppose that X is normally distributed with a mean of 50 and a standard deviation of...
Suppose that X is normally distributed with a mean of 50 and a standard deviation of 12. What is P(X ≥ 74.96) a) 0.481 b) 0.019 c) 0.981 d) 0.024 e) 0.020 f) None of the above
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose one individual is randomly chosen. Find the probability that the person has an IQ less than 110. Include a sketch of the graph and shade the area to be determined.
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose one individual is randomly chosen. Let X = IQ of an individual. a. X ~ _____(_____,_____) b. Find the probability that the person has an IQ greater than 120. A. 0.05            B. 0.08           C. 0.09           D. 0.06           E. 0.07 c. Find the probability that the person has an IQ between 90 and 115. A. 0.589            B. 0.664           C. 0.732           D. 0.531           E. 0.469 d. Find the 60th percentile A. 98.6              B. 100.0             C. 103.8            D....
Suppose that ? is normally distributed with mean 100 and standard deviation 19. A. What is...
Suppose that ? is normally distributed with mean 100 and standard deviation 19. A. What is the probability that ? is greater than 137.43? Probability = B. What value of ? does only the top 16% exceed?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT