Question

In: Physics

The engine burns out after t1=2.8 s . At that time, the rocket is y=105 m...

The engine burns out after t1=2.8 s . At that time, the rocket is y=105 m above the ground

1- Calculate the acceleration of the rocket while the engine was burning, a1. First draw a pictorial representation properly labeled with known and unknown data. Remember when choosing an initial and final snapshot for analysis the acceleration must be constant for the entire motion between your chosen snapshots.   Solve this and remaining problems symbolically until the final step. (I will take off points if you don’t.

2- Calculate the velocity, v1,f, of the rocket when the engine burns out

3- Determine the total time of flight. (Hint, determine the time of flight from the moment the rocket runs out of fuel to the moment it reaches the ground and add your result to the time it took for the engine to burn out.) First draw a pictorial representation properly labeled with known and unknown data. Remember when choosing an initial and final snapshot for analysis the acceleration must be constant for the entire motion between your chosen snapshots.

4- Calculate the maximum height above the ground that the rocket attains.

Solutions

Expert Solution


Related Solutions

4.15 A small 7.40-kg rocket burns fuel that exerts a time-varying upward force on the rocket....
4.15 A small 7.40-kg rocket burns fuel that exerts a time-varying upward force on the rocket. This force obeys the equation F=A+Bt2. Measurements show that at t=0, the force is 104.0N , and at the end of the first 1.50s , it is 193.0N . Find the constant A Find the constants B Find the net force on this rocket the instant after the fuel ignites. Find the acceleration of this rocket the instant after the fuel ignites. Find the...
A rocket has a mass of 1.40×04 kg and its engine has a thrust of 200×105...
A rocket has a mass of 1.40×04 kg and its engine has a thrust of 200×105 N. If its engines fire in the vertical direction for 1 min starting from rest, to what vertical height would it rise in the absence of air resistance? (To simplify things, assume the mass is constant. However, in reality the mass of rockets decreases substantially while rising)
Part A The reactant concentration in a zero-order reaction was 0.100 M after 105 s and 3.00×10−2 M after 350 s
PLEASE MAKE SURE YOUR ANSWERS ARE CORRECT Part A The reactant concentration in a zero-order reaction was 0.100 M after 105 s and 3.00×10−2 M after 350 s . What is the rate constant for this reaction? Express your answer with the appropriate units. Indicate the multiplication of units, as necessary, explicitly either with a multiplication dot or a dash. Part B What was the initial reactant concentration for the reaction described in Part A? Express your answer with the...
a rocket rises vertically from rest, with an acceleration of 3.2 m/s(s) until it runs out...
a rocket rises vertically from rest, with an acceleration of 3.2 m/s(s) until it runs out of fuel at an altitude of 845 m. After this point, its acceleration is that of gravity, downward. what is the velocity when the rocket runs out of fuel? how long does it take to reach that point? what is the maximum altitude and how long to reach it? what is the velocity when it strikes earth? how long is the rocket in the...
A rocket moves with a speed of 45 m / s. The rocket suddenly breaks into...
A rocket moves with a speed of 45 m / s. The rocket suddenly breaks into two parts of equal mass that fly at speeds v1 and v2. Obtain the magnitude of the velocity of each part in which the rocket broke.
2. A rocket is fired vertically with an upward acceleration of 20 m/s2. After 25 s,...
2. A rocket is fired vertically with an upward acceleration of 20 m/s2. After 25 s, the engine shuts off and the rocket continues as a free particle. (a) Find the highest point the rocket reaches. (b) Find the total time the rocket is in the air. (c) Draw the graph acceleration versus time for the motion. d) Draw the graph velocity versus time for the motion. (e) Draw the graph position versus time for the motion. (f) On each...
A fireworks rocket is moving at a speed of v = 45.7 m/s. The rocket suddenly...
A fireworks rocket is moving at a speed of v = 45.7 m/s. The rocket suddenly breaks into two pieces of equal mass, which fly off with velocities v1 at an angle of theta1 = 30.7° and v2 at an angle of theta2 = 59.3° as shown in the drawing below.
Part A The reactant concentration in a zero-order reaction was 9.00×10−2 M after 105 s and...
Part A The reactant concentration in a zero-order reaction was 9.00×10−2 M after 105 s and 1.00×10−2 M after 325 s . What is the rate constant for this reaction? Express your answer with the appropriate units. k0th = Part B What was the initial reactant concentration for the reaction described in Part A? Express your answer with the appropriate units. [A]0 = Part C The reactant concentration in a first-order reaction was 6.70×10−2 M after 25.0 s and 2.20×10−3...
A 1246 kg weather rocket accelerates upward at 11.7 m/s2. It explodes 1.6 s after liftoff...
A 1246 kg weather rocket accelerates upward at 11.7 m/s2. It explodes 1.6 s after liftoff and breaks into two fragments, one twice as massive as the other. Photos reveal that the lighter fragment traveled straight up and reached a maximum height of 571 m. What were the speed of the heavier fragment just after the explosion?
1) A 1000 kg rocket travels in outer space at 5000 m/s. The rocket then separates...
1) A 1000 kg rocket travels in outer space at 5000 m/s. The rocket then separates into two sections: a 250 kg section that travels at 8000 m/s, and a 750 kg section. All of this takes place in a straight line that you can consider as your x-axis. (Do not assume kinetic energy is constant throughout this process.) A) What is the total momentum of the system before the separation? B) What is the total kinetic energy of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT