Question

In: Physics

2. A rocket is fired vertically with an upward acceleration of 20 m/s2. After 25 s,...

2. A rocket is fired vertically with an upward acceleration of 20 m/s2. After 25 s, the engine shuts off and the rocket continues as a free particle.

(a) Find the highest point the rocket reaches.

(b) Find the total time the rocket is in the air.

(c) Draw the graph acceleration versus time for the motion.

d) Draw the graph velocity versus time for the motion.

(e) Draw the graph position versus time for the motion.

(f) On each graph mark by the letter A the point where the engine is shut off.

(g) On each graph marl by letter B the point where the rocket reaches the maximum height.

Solutions

Expert Solution

A)

B)

C)

D)

E)


Related Solutions

A rocket is fired straight upward, starting from rest with an acceleration of 25.0 m/s2. It...
A rocket is fired straight upward, starting from rest with an acceleration of 25.0 m/s2. It runs out of fuel at the end of 4.00 s and continues to coast upward, reaching a maximum height before falling back to Earth. (a) Find the rocket’s height when it runs out of fuel; (b) find the rocket’s velocity when it runs out of fuel; (c) find the maximum height the rocket reaches; (d) find the rocket’s velocity the instant before the rocket...
A rocket is fired vertically upward. At the instant it reaches an altitude of 1450 m...
A rocket is fired vertically upward. At the instant it reaches an altitude of 1450 m and a speed of 265 m/s, it explodes into three equal fragments. One fragment continues to move upward with a speed of 292 m/s following the explosion. The second fragment has a speed of 396 m/s and is moving east right after the explosion. What is the magnitude of the velocity of the third fragment? Answer in units of m/s
The acceleration of a rocket traveling upward is given by a = (8 + 0.02s) m/s2,...
The acceleration of a rocket traveling upward is given by a = (8 + 0.02s) m/s2, where s is in meters.(Figure 1). Initially, v = 0 and s = 0 when t = 0. Determine the time needed for the rocket to reach an altitude of s = 100 m .
A model rocket is fired vertically upward from rest. Its acceleration for the first three seconds...
A model rocket is fired vertically upward from rest. Its acceleration for the first three seconds is given by a(t) = 60t ft/s2 , at which time the fuel is exhausted and it becomes a freely “falling” body and falls to the ground. (a) Determine the position function s(t) for all times t > 0. (b) What is the maximum height achieved by the rocket? ( c) At what value of t does the rocket land?
A model rocket is fired vertically upward from rest. Its acceleration for the first three seconds...
A model rocket is fired vertically upward from rest. Its acceleration for the first three seconds is a(t)=96t, at which time the fuel is exhausted and it becomes a freely "falling" body. 1919 seconds later, the rocket's parachute opens, and the (downward) velocity slows linearly to −16 ft/s in 5 s. The rocket then "floats" to the ground at that rate. (a) Determine the position function s and the velocity function v(for all times t). v(t)=    if 0≤t≤3    ...
The distance s(in m) above the ground for a projectile fired vertically upward with a velocity...
The distance s(in m) above the ground for a projectile fired vertically upward with a velocity of 4(a) m/s as a function of time t(in s) is given by s=4(a)t-4.(b)t2 a= 6 b=9 Find the answers to these questions 1. find t for v=0 2. find v for t=4 3. find v for t=5 what conclusions can you draw?
A 1246 kg weather rocket accelerates upward at 11.7 m/s2. It explodes 1.6 s after liftoff...
A 1246 kg weather rocket accelerates upward at 11.7 m/s2. It explodes 1.6 s after liftoff and breaks into two fragments, one twice as massive as the other. Photos reveal that the lighter fragment traveled straight up and reached a maximum height of 571 m. What were the speed of the heavier fragment just after the explosion?
a rocket rises vertically from rest, with an acceleration of 3.2 m/s(s) until it runs out...
a rocket rises vertically from rest, with an acceleration of 3.2 m/s(s) until it runs out of fuel at an altitude of 845 m. After this point, its acceleration is that of gravity, downward. what is the velocity when the rocket runs out of fuel? how long does it take to reach that point? what is the maximum altitude and how long to reach it? what is the velocity when it strikes earth? how long is the rocket in the...
A 7400 kg rocket blasts off vertically from the launch pad with a constant upward acceleration...
A 7400 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.15 m/s2 and feels no appreciable air resistance. When it has reached a height of 550 m , its engines suddenly fail so that the only force acting on it is now gravity. a)What is the maximum height this rocket will reach above the launch pad? b)How much time after engine failure will elapse before the rocket comes crashing down to the launch...
A 7450 kg rocket blasts off vertically from the launch pad with a constant upward acceleration...
A 7450 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.25 m/s2 and feels no appreciable air resistance. When it has reached a height of 500 m , its engines suddenly fail so that the only force acting on it is now gravity. A. What is the maximum height this rocket will reach above the launch pad? B. How much time after engine failure will elapse before the rocket comes crashing down to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT