Question

In: Physics

An object has initial position r0 = (-1,1) meters, initial velocity v0 = (-0.5, 2) m/s,...

An object has initial position r0 = (-1,1) meters, initial velocity v0 = (-0.5, 2) m/s, and  acceleration a = (0.1, -0.5) m/s. In the following questions, if there is more than one possible answer, use the positive answer.

a) At what time is the y component of the velocity equal to 0?

b) At what time is the y component of the position equal to 0?

c) At what time is the x component of the velocity equal to 0?

d) At what time is the x component of the position equal to 0?

Solutions

Expert Solution

IF U HAVE ANY DOUBT U CAN ASK ME IN COMMENT BOX ......HOPE U LIKE IT ....


Related Solutions

If a projectile is fired with an initial velocity v0 meters per second at an angle...
If a projectile is fired with an initial velocity v0 meters per second at an angle α above the horizontal and air resistance is assumed to be negligible, then its position after t seconds is given by the parametric equations x=(v0 cos α)t     &     y=(v0 sin α) t-1/2gt2   Suppose α=30o and v0=500 m/s (a) At what time t does the projectile hit the ground? (b) How far does the projectile travel from the time it is fired until the time...
A ball is thrown upward with initial velocity v0 = 15.0 m/s at an angle of...
A ball is thrown upward with initial velocity v0 = 15.0 m/s at an angle of 30° with the horizontal. The thrower stands near the top of a Jong hill which slopes downward at an angle of 20°. Determine how far down the slope the ball strikes.
An object starts at the position 4.8x̂ + -9.7ŷ m, with an initial velocity of 1.5x̂...
An object starts at the position 4.8x̂ + -9.7ŷ m, with an initial velocity of 1.5x̂ + -4.4ŷ m/s. It has an acceleration of -0.152x̂ + 0.686ŷ m/s2. After 2.31 s, what is its speed? Report your result in SI units, rounded to one decimal place.
An object is thrown upward with an initial velocity of 32.1 m/s. When the object reaches...
An object is thrown upward with an initial velocity of 32.1 m/s. When the object reaches it maximum height, it is true of the acceleration, a, and the velocity, v, that: both its acceleration and velocity are zero both its acceleration and velocity change sign velocity is equal to zero, but acceleration is not acceleration is equal to zero, but velocity is not None of the above. Please help. Only one answer is true. Please give reason why.
A small object with mass m, charge q, and initial speed v0 = 6.00×103 m/s is...
A small object with mass m, charge q, and initial speed v0 = 6.00×103 m/s is projected into a uniform electric field between two parallel metal plates of length 26.0 cm (Figure 1). The electric field between the plates is directed downward and has magnitude E = 700 N/C . Assume that the field is zero outside the region between the plates. The separation between the plates is large enough for the object to pass between the plates without hitting...
An object is launched with an initial velocity of 50.0 m/s at a launch angle of...
An object is launched with an initial velocity of 50.0 m/s at a launch angle of 36.9∘ above the horizontal. Determine x-values at each 1 s from t = 0 s to t = 6 s. Determine y-values at each 1 s from t = 0 s to t = 6 s. Determine vx-values at each 1 s from t = 0 s to t = 6 s. Determine vy-values at each 1 s from t = 0 s to...
An object is launched with an initial velocity of 50.0 m/s at a launch angle of...
An object is launched with an initial velocity of 50.0 m/s at a launch angle of 36.9? above the horizontal. A.Determine x-values at each 1 s from t = 0 s to t = 6 s. B.Determine y-values at each 1 s from t = 0 s to t = 6 s. C.Determine vx-values at each 1 s from t = 0 s to t = 6 s. D.Determine vy-values at each 1 s from t = 0 s to...
A bullet of mass m is fired from the initial ground velocity of magnitude v0 at...
A bullet of mass m is fired from the initial ground velocity of magnitude v0 at elevation angle θ0. (a) Express her momentum relative to the location of the shot as a function of time. (b) How fast does the momentum change? (c) Calculate the size vector r × F directly and compare it with the result of problem (b). Why both results are identical
An object of mass 3.05 kg, moving with an initial velocity of 4.90 i hat m/s,...
An object of mass 3.05 kg, moving with an initial velocity of 4.90 i hat m/s, collides with and sticks to an object of mass 2.01 kg with an initial velocity of -3.62 j hat m/s. Find the final velocity of the composite object. v=(......i+.....j)
2. A 2kg puck is located at position (5???? 2???)m with velocity (?7???? ???)m/s at time...
2. A 2kg puck is located at position (5???? 2???)m with velocity (?7???? ???)m/s at time t=0s. I apply a constant force of magnitude 10N in the direction (?4???+ 2???) for 10 seconds. At time t=10s, the puck is at position (????+ 10???)m with a velocity of 5m/s in the direction (???+ ???). a. How much work did I do on the puck? b. How much work is done on the puck total? c. What is the average power input...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT