Question

In: Chemistry

An electron in a hydrogen atom is excited from the n = 1 ground state to the n = 4 excited state

An electron in a hydrogen atom is excited from the n = 1 ground state to the n = 4 excited state. Classify the statements about this absorption and emission process as true or false. 


True 

On average, the electron is closer to the nucleus in the n = 4 state than in the n = 1 state. 

The wavelength of light absorbed when the electron is excited from the ground state to n = 4 is the same as the wavelength of light emitted when the electron falls from n = 4 to the ground state. 


False

It takes less energy to ionize the electron from the n = 4 state than from the ground state. 

The wavelength of light emitted when the electron falls from = 4 to = 2 is shorter than the wavelength of light emitted when the electron falls from n = 4 ton = 1. 

Then = 4 excited state is the first possible excited state.


An electron in a hydrogen atom is excited from the n = 1 ground state to the n = 4 excited state. Classify the statements abo

Solutions

Expert Solution



Related Solutions

An Electron initially in the n=2 state of a hydrogen atom is excited by a photon...
An Electron initially in the n=2 state of a hydrogen atom is excited by a photon to the n=5 state. a. What is the energy of the excitatoin photon? b. As the atom relaxes, the electron transitions to the ground state. What is the energy of the photon released during the electron transition? c. What is the frequency of the released photon? d. What is the name of the scientist who first modeled the atom as a miniature solar system?
A hydrogen electron, initially in its second excited state (n=3), jumps down to the ground state...
A hydrogen electron, initially in its second excited state (n=3), jumps down to the ground state n=1. The energy of n=1 state is -13.6 eV. A) What is the energy of the photon emitted from this jumping down process? ( I got 12.08889eV) B) Is this emitted photon energetic enough to create photoelectrons from Ni( Ni working function is 5 eV)? C) If this emitted photon (from the jump down from n=3 to n=1) is reabsorbed by a hydrogen electron...
A hydrogen atom stays in the 3rd excited state (n = 4). Consider of the quantum...
A hydrogen atom stays in the 3rd excited state (n = 4). Consider of the quantum behavior of the electron, but ignore the quantum behavior of the nucleus. (a) What are the possible values for the quantum number l and what are the corresponding orbitals? Write down the magnitude of each orbital angular momentum (in units of ħ). (b) For each value of l, what are possible values for the quantum number ml and the magnitude of the z component...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a transition to the n=3 state. Then it returns to the ground state by emitting two photons when going to n=2 and then n=1 states. A. What are the wavelengths of these photons? B. What will be the wavelength if only one photon is emitted? C. What is the maximum number of electrons with ml=3 in the shell with n=5? D. How many electrons with...
Consider a de-excitation of Hydrogen from an excited state n = 3 to the ground state...
Consider a de-excitation of Hydrogen from an excited state n = 3 to the ground state n = 1. The transition to a lower energy state will cause the atom to emit a photon. Due to momentum conservation, the atom will have a small recoil velocity. Determine an expression of the recoil velocity of the hydrogen atom, and compute its numerical value. Do not leave ΔE or the photon frequency f in your answer! Note that the atom is non-relativistic.
A hydrogen atom emits a photon when its electron falls from its 3rd excited state (?=4)...
A hydrogen atom emits a photon when its electron falls from its 3rd excited state (?=4) to its first excited state (?=2). Another electron in a box with sides of infinite potential absorbs the photon and jumps from the ground state (?=1) to the 5th excited state (?=6). a. [2] What is the wavelength of the emitted photon? (Calculate this, don’t just look it up) b. [3] What is the length of the box? c. [3] Using the fact that...
In the Bohr model of the hydrogen atom, an electron in the 7th excited state moves...
In the Bohr model of the hydrogen atom, an electron in the 7th excited state moves at a speed of 4.47  104 m/s in a circular path of radius 2.59  10-9 m. What is the effective current associated with this orbiting electron? .....mA
The binding energy of an electron in the ground state in a hydrogen atom is about:...
The binding energy of an electron in the ground state in a hydrogen atom is about: A. 13.6 eV B. 3.4 eV C. 10.2 eV D. 1.0 eV E. 27.2 eV
The radial probability density for the electron in the ground state of a hydrogen atom has...
The radial probability density for the electron in the ground state of a hydrogen atom has a peak at about: A. 0.5pm B. 5 pm C. 50pm D. 500pm E. 5000pm ans: C Chapter
Calculate the probability of an electron in the ground state of the hydrogen atom being inside...
Calculate the probability of an electron in the ground state of the hydrogen atom being inside a sphere radius r = 2.40 ✕ 10-14 m, centered around the nucleus. (Hint: Note that r << a0.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT