Question

In: Economics

Suppose the inverse demand function is given by ?=5?−5p=5q−5 where p is the market price and...

Suppose the inverse demand function is given by ?=5?−5p=5q−5 where p is the market price and q is the quantity demanded. Calculate price elasticity of demand. Round your answer to the first decimal place. There is no value for p.

This is all the information the question gives.

Solutions

Expert Solution

•P=5Q-5

•Price elasticity of demand= (P/Q)*(∆Q/∆P)

P= 5Q-5

P+5 = 5Q

Q= (P+5)/5

•∆Q/∆P= 1/5

• Since the value of (P/Q) is not given we can assume that it is constant say 1

So, elasticity of demand= 1× 1/5 = 0.2

​​​​​​


Related Solutions

Suppose that the market demand is given by Q(p)=200-5p. Let p(q) be the maximal price at...
Suppose that the market demand is given by Q(p)=200-5p. Let p(q) be the maximal price at which the agents would buy q units, i.e., the inverse demand function. Then? a. p(q)=40-5q b. p(q)=40-0.2q c. p(q)=40-0.4q d. p(q)=200-10q e. p(q)=200-5q
Consider the following industry where the inverse market demand is given by the function: p=180-Y where...
Consider the following industry where the inverse market demand is given by the function: p=180-Y where Y is the total market output. There are two firms in the market, each has a total cost function: ci (yi)=3(yi)2 where i=1,2 is the label of the firm. Suppose the firms act as Cournot duopolists. What output level will each firm produce in order to maximize profits?.
Suppose the market demand for broccoli is given by Demand: Q = 1000 – 5P Where...
Suppose the market demand for broccoli is given by Demand: Q = 1000 – 5P Where Q is quantity measured in 100s of bushels and P is price per hundred bushels. The market supply is given by Supply: Q = 4P – 80 What is the equilibrium price and quantity? How much is spent on broccoli? What is consumer and producer surplus? Describe the impact of a $150 per hundred bushel price floor on broccoli. (How many bushels would be...
Refer to a duopoly market in which the inverse demand function is given by P =...
Refer to a duopoly market in which the inverse demand function is given by P = 96 − Q. Firm 1's cost function is c(q1) = 6q1 + 300, and firm 2's cost function is c(q2) = 6q2 + 600 (such that each firm has MC = 6). Q1: The outputs of the two firms in Cournot-Nash equilibrium will be: 1) q1 = 45 and q2 = 0. 2) q1 = 30 and q2 = 30. 3) q1 = 45...
Refer to a duopoly market in which the inverse demand function is given by P =...
Refer to a duopoly market in which the inverse demand function is given by P = 96 − Q. Firm 1's cost function is c(q1) = 6q1 + 0.5q12, and firm 2's cost function is c(q2) = 6q2 + 0.5q22 (such that each firm has MC = 6 + q). Q1: The Cournot best-response function for firm 1 will be: 1) q1 = 22.5 − q2/4 2) q1 = 30 − q2/3 3) q1 = 45 − q2/2 4) q1...
The inverse demand function in a market is given by p=32-Q where Q is the aggregate quantity produced.
  The inverse demand function in a market is given by p=32-Q where Q is the aggregate quantity produced. The market has 3 identical firms with marginal and average costs of 8. These firms engage in Cournot competition.   a) How much output does each firm produce? b) What is the equilibrium price in the market? c) How much profit does each firm make? d) Consider a merger between two firms. Assuming that due to efficiency gains from the merger,...
2. A markets demand function is given by D(p) = 40 -.5P, and the market supply...
2. A markets demand function is given by D(p) = 40 -.5P, and the market supply function is given by S(P) = (1/3)P - 10. a. Draw the demand and supply curves, and calculate and label the market price and quantity on the graph. b. Calculate and label the consumer surplus and the producer surplus. c. If the government imposes a $10 per unit tax on producers, draw the old and new demand and supply curves. d. Calculate the new...
Consider a market where inverse demand is given by P = 40 − Q, where Q...
Consider a market where inverse demand is given by P = 40 − Q, where Q is the total quantity produced. This market is served by two firms, F1 and F2, who each produce a homogeneous good at constant marginal cost c = $4. You are asked to analyze how market outcomes vary with industry conduct: that is, the way in which firms in the industry compete (or don’t). First assume that F1 and F2 engage in Bertrand competition. 1....
Inverse demand function: P=40-5Q Using the demand function above, Assuming that marginal cost is $10 and...
Inverse demand function: P=40-5Q Using the demand function above, Assuming that marginal cost is $10 and price elasticity of demand is -1.667, what is the optimal price a seller should charge to maximize profit?
Consider a Monopolist where the inverse market demand curve for the produce is given by P...
Consider a Monopolist where the inverse market demand curve for the produce is given by P = 520 − 2Q. Marginal Cost: MC =100 + 2Q and Total Cost: 100 .50 2 TC = Q + Q + [1 + 1 + 1 = 3] Calculate: (a) Profit Maximizing Price and Quantity. (b) Single Price Monopolist Profit. (c) At the profit maximizing quantity, what is the Average Total Cost (ATC) for the Consider a Monopolist where the inverse market demand...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT