Question

In: Statistics and Probability

In 1990, the mean height of adult women was 63.7 inches based on data obtained from...

In 1990, the mean height of adult women was 63.7 inches based on data obtained from the Centers for Disease Control and Prevention’s Advance Data Report, No. 346. The president of Avonlea Country Club feels that women at his club are taller than the national average. Suppose in random sample of 20 women resulted in a mean height of 64.2 inches with a sample standard deviation of 0.59 inches. At , is he correct assuming that women at Avonlea Country Club are taller than national average?

• State the hypotheses and identify the claim.
• Write out observations and the level of significance.
• Find the test value and P-value and compare with the alpha
• Make a decision
• Write the conclusion.

Solutions

Expert Solution


Related Solutions

In 1990, the mean height of women 20 years of age or older was 63.7 inches...
In 1990, the mean height of women 20 years of age or older was 63.7 inches based on data obtained from the CDC. Suppose that a random sample of 45 women who are 20 years of age or older in 2015 results in a mean height of 63.9 inches with a standard deviation of 0.5 inch. Does your sample provide sufficient evidence that women today are taller than in 1990? Perform the appropriate test at the 0.05 level of significance....
height is approximately nornamlly distributed. for women, the mean height is 64 inches and with a...
height is approximately nornamlly distributed. for women, the mean height is 64 inches and with a standard deveatikn of 2.56inches. a. what proportion of women are taller than 72 inches? b.how tall are women in the 90th percentile? c. how tall are women in the 40th percentile?
Several years​ ago, the mean height of women 20 years of age or older was 63.7...
Several years​ ago, the mean height of women 20 years of age or older was 63.7 inches. Suppose that a random sample of 45 women who are 20 years of age or older today results in a mean height of 64.7 inches. ​ (a) State the appropriate null and alternative hypotheses to assess whether women are taller today. ​ (b) Suppose the​ P-value for this test is 0.12 . Explain what this value represents. ​(c) Write a conclusion for this...
The following data was collected on the height (inches) and weight (pounds) of women swimmers. Height...
The following data was collected on the height (inches) and weight (pounds) of women swimmers. Height Weight 68 132 64 108 62 102 65 115 66 128 Provide a regression analysis from the height and weight data. SUMMARY OUTPUT Regression Statistics Multiple R 0.9603 R Square 0.9223 Adjusted R Square 0.8963 Standard Error 4.1231 Observations 5 ANOVA df SS MS F Significance F Regression 1 605 605 35.5882 0.0094 Residual 3 51 17 Total 4 656 Coefficients Standard Error t...
The distribution of heights of adult women is Normally distributed, with a mean of 65 inches...
The distribution of heights of adult women is Normally distributed, with a mean of 65 inches and a standard deviation of 3.5 inches.Susan's height has a z-score of negative 0.5 when compared to all adult women in this distribution. What does this z-score tell us about how Susan's height compares to other adult women in terms of height?
2. The mean height of American women in their twenties is about 64.3 inches, and the...
2. The mean height of American women in their twenties is about 64.3 inches, and the standard deviation is about 2.7 inches. The mean height of men the same age is about 69.9 inches, with standard deviation about 3.1 inches. Suppose that the correlation between the heights of husbands and wives is about r = 0.5. What are the slope and intercept of the regression line of the husband’s height on the wife’s height in young couples? Interpret the slope...
Adult male height is normally distributed with a mean of 69.2 inches and a standard deviation...
Adult male height is normally distributed with a mean of 69.2 inches and a standard deviation of 2.28 inches. a) If an adult male is randomly selected, what is the probability that the adult male has a height greater than 69.1 inches? Round your final answer to four decimal places. b) If 28 adult male are randomly selected, what is the probability that they have a mean height greater than 70 inches? Round your final answer to four decimal places.
Suppose the heights of adult women follow a normal distribution with a mean of 65.5 inches...
Suppose the heights of adult women follow a normal distribution with a mean of 65.5 inches and a standard deviation of 2.75 inches. Determine the following: 1.) What percent of adult women are taller than 6 feet (72 inches)? 2.) What percent of adult women are taller than 5 feet (60 inches)? 3.) What percent of adult women are between 60 and 72 inches tall? 4.) Because of the high cost of materials, the company has decided that they cannot...
The mean height of women in the United States (ages 20-29) is 64.2 inches with a...
The mean height of women in the United States (ages 20-29) is 64.2 inches with a standard deviation of 2.9 inches. A random sample of 60 women in this age group is selected. Assume that the distribution of these heights is normally distributed. Are you more likely to randomly select 1 woman with a height more than 70 inches or are you more likely to select a random sample of 20 women with a mean height more than 70 inches?...
1.Assume that the heights of adult women are normally distributed with a mean height of 160...
1.Assume that the heights of adult women are normally distributed with a mean height of 160 centimeters and the standard deviation is 8 centimeters. What percentage of individuals have heights less than 160 centimeters? 2. Find the probability that a randomly selected individual has a height greater than 176 centimeters. 3. Find the probability that a randomly selected individual has a height less than 152 centimeters. 4. Can you determine the probability that a randomly selected individual has a height...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT