Question

In: Statistics and Probability

2. The mean height of American women in their twenties is about 64.3 inches, and the...

2. The mean height of American women in their twenties is about 64.3 inches, and the standard deviation is about 2.7 inches. The mean height of men the same age is about 69.9 inches, with standard deviation about 3.1 inches. Suppose that the correlation between the heights of husbands and wives is about r = 0.5.

  1. What are the slope and intercept of the regression line of the husband’s height on the wife’s height in young couples? Interpret the slope in the context of the problem.
  2. Draw a graph of this regression line for heights of wives between 56 and 72 inches. Predict the height of the husband of a woman who is 67 inches tall, and plot the wife’s height and predicted husband’s height on your graph

Solutions

Expert Solution

2. The mean height of American women in their twenties is about 64.3 inches, and the standard deviation is about 2.7 inches. The mean height of men the same age is about 69.9 inches, with standard deviation about 3.1 inches. Suppose that the correlation between the heights of husbands and wives is about r = 0.5.

What are the slope and intercept of the regression line of the husband’s height on the wife’s height in young couples? Interpret the slope in the context of the problem.

Given: y=husband height and x= wife height

Slope b= r*sy/sx =0.5*3.1/2.7 = 0.5741

=69.9-0.5741*64.3

=32.9854

The estimated regression line is y=32.9854+0.5741*x

When wife height increases by 1 inch, the husband height increases by 0.5741 inches.

Draw a graph of this regression line for heights of wives between 56 and 72 inches. Predict the height of the husband of a woman who is 67 inches tall, and plot the wife’s height and predicted husband’s height on your graph

When x=67, predicted y =32.9854+0.5741*67

=71.45


Related Solutions

The height of women ages​ 20-29 are normally​ distributed, with a mean of 64.3 inches. Assume...
The height of women ages​ 20-29 are normally​ distributed, with a mean of 64.3 inches. Assume sigmaequals2.5 inches. Are you more likely to randomly select 1 woman with a height less than 66.2 inches or are you more likely to select a sample of 18 women with a mean height less than 66.2 ​inches? Explain. What is the probability of randomly selecting 1 woman with a height of less than 66.2 ​inches? _______​(Round to four decimal places as​ needed.) What...
The mean height of women in a country​ (ages 20minus−​29) is 64.3 inches. A random sample...
The mean height of women in a country​ (ages 20minus−​29) is 64.3 inches. A random sample of 65 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 ​inches? Assume sigmaσequals=2.69 The probability that the mean height for the sample is greater than 65 inches is
height is approximately nornamlly distributed. for women, the mean height is 64 inches and with a...
height is approximately nornamlly distributed. for women, the mean height is 64 inches and with a standard deveatikn of 2.56inches. a. what proportion of women are taller than 72 inches? b.how tall are women in the 90th percentile? c. how tall are women in the 40th percentile?
The heights of North American women are normally distributed with a mean of 64 inches and...
The heights of North American women are normally distributed with a mean of 64 inches and a standard deviation of 2 inches. (a) What is the probability that a randomly selected woman is taller than 66 inches? (b) A random sample of 40 women is selected. What is the probability that the sample mean height is greater than 66 inches?
In 1990, the mean height of women 20 years of age or older was 63.7 inches...
In 1990, the mean height of women 20 years of age or older was 63.7 inches based on data obtained from the CDC. Suppose that a random sample of 45 women who are 20 years of age or older in 2015 results in a mean height of 63.9 inches with a standard deviation of 0.5 inch. Does your sample provide sufficient evidence that women today are taller than in 1990? Perform the appropriate test at the 0.05 level of significance....
The mean height of women in the United States (ages 20-29) is 64.2 inches with a...
The mean height of women in the United States (ages 20-29) is 64.2 inches with a standard deviation of 2.9 inches. A random sample of 60 women in this age group is selected. Assume that the distribution of these heights is normally distributed. Are you more likely to randomly select 1 woman with a height more than 70 inches or are you more likely to select a random sample of 20 women with a mean height more than 70 inches?...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.2 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.2 inches. Assume sigmaequals2.9 inches. Are you more likely to randomly select 1 woman with a height less than 65.3 inches or are you more likely to select a sample of 29 women with a mean height less than 65.3 ​inches? Explain. LOADING... Click the icon to view page 1 of the standard normal table. LOADING... Click the icon to view page 2 of the standard normal...
The mean height of women in a country​ (ages 20minus−​29) is 64.1 inches. A random sample...
The mean height of women in a country​ (ages 20minus−​29) is 64.1 inches. A random sample of fifty women in this age group is selected. What is the probability that the mean height for the sample is greater than sixtyfive ​inches? Assume sigmaσequals=2.75 The probability that the mean height for the sample is greater than sixtyfive inches is
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.7 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.7 inches. Assume sigmaσequals=2.7 inches. Are you more likely to randomly select 1 woman with a height less than 67.267.2 inches or are you more likely to select a sample of 10 women with a mean height less than 67.2 ​inches? Explain. LOADING... Click the icon to view page 1 of the standard normal table. LOADING... Click the icon to view page 2 of the standard normal...
In 1990, the mean height of adult women was 63.7 inches based on data obtained from...
In 1990, the mean height of adult women was 63.7 inches based on data obtained from the Centers for Disease Control and Prevention’s Advance Data Report, No. 346. The president of Avonlea Country Club feels that women at his club are taller than the national average. Suppose in random sample of 20 women resulted in a mean height of 64.2 inches with a sample standard deviation of 0.59 inches. At , is he correct assuming that women at Avonlea Country...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT