Question

In: Physics

1. A cosmic ray proton moving toward the Earth at 5.5 × 107 m/s experiences a...

1. A cosmic ray proton moving toward the Earth at 5.5 × 107 m/s experiences a magnetic force of 1.65 × 10-16 N .

What is the strength of the magnetic field if there is a 45º angle between it and the proton’s velocity?

2.   A 2.25 m segment of wire supplying current to the motor of a submerged submarine carries 950 A and feels a 3.9 N repulsive force from a parallel wire 5.00 cm away.

What is the magnitude of the current in the other wire in A?

Solutions

Expert Solution

Solution :-

Solution to these problems are based on the concept of force on a moving charge in magnetic field and force on a current carrying wire in magnetic field. Force(F) on a moving charge(q) moving with velocity v in magnetic field (B) is given as : and force(F) on a current(I) carrying wire of length L in magnetic field(B) can be given as : , in question 2, B is magnetic field created by current(I1) and force is experienced due to this field on I2. Please read soilution carefully and feel free to ask any doubt you face while understanding my solution. I would be happy to help.


Related Solutions

1.- A) A proton of cosmic ray in interstellar space has an energy of 7.50 MeV...
1.- A) A proton of cosmic ray in interstellar space has an energy of 7.50 MeV and executes a circular orbit of radius equal to that of Mercury's orbit around the Sun (5.80 x 1010 m). What is the magnetic field in that region of space? a 9.648e-031 T b 2.295e + 010 T c None of the above d 2.699e-012 T e 6.822e-012 T B) A circular coil of 55.00 turns and 1.00 cm radius can be oriented in...
(a)A cosmic ray proton streaks through the lab with velocity 0.82c at an angle of 52°...
(a)A cosmic ray proton streaks through the lab with velocity 0.82c at an angle of 52° with the +x direction (in the xy plane of the lab). Compute the magnitude and direction of the proton's velocity when viewed from frame S' moving with β = 0.74. (b) Suzanne observes two light pulses to be emitted from the same location, but separated in time by 3.50 µs. Mark sees the emission of the same two pulses separated in time by 8.00µs....
A proton moving at 40 m/s due East collides with another proton at rest. Assume the...
A proton moving at 40 m/s due East collides with another proton at rest. Assume the collision is elastic and glancing. After the collision, one proton moves 30◦ south of East. Find the magnitude an direction of the other proton after the glancing collision
A proton moving at 40 m/s due East collides with another proton at rest. Assume the...
A proton moving at 40 m/s due East collides with another proton at rest. Assume the collision is elastic and glancing. After the collision, one proton moves 30◦ south of East. Find the magnitude an direction of the other proton after the glancing collision
Moving with proton i = (2i + 3j - k) m / s velocity in a...
Moving with proton i = (2i + 3j - k) m / s velocity in a region where uniform magnetic field B = (21i + 4j + k) T and uniform electric field E = (4i-j-2k) V / m It is. a) Calculate the electrical, magnetic and total force acting on the particle? b) How much angle does the total force vector with the positive x-axis? c) What is the acceleration of the proton? (mp = 1.6x10 ^ 27kg for...
1.) A proton moves with a speed of 5.5 x 10^5 m/s along the +x axis....
1.) A proton moves with a speed of 5.5 x 10^5 m/s along the +x axis. It enters a region where there is uniform magnetic field of 1.5 T, directed of 30 degrees to the x-axis and lying in the x-y plane. Calculate the initial force and acceleration of the proton. 2.) A wire carries a current of 4.5-A in a direction of 35 degrees with respect to the direction of a magnetic field of 0.5 T. Find the magnitude...
An electron is slowed down quickly from 107 m/s to 0.5 * 107 m/s, and a...
An electron is slowed down quickly from 107 m/s to 0.5 * 107 m/s, and a single photon is created in the process. Identify the radiation process (eg. Compton, positron emission, etc.) and compute the frequency and wavelength of the emitted photon.
Consider a proton moving with a speed of 7.0 × 103 m/s. a) Calculate the de...
Consider a proton moving with a speed of 7.0 × 103 m/s. a) Calculate the de Broglie wavelength of this proton. Consider an electron having a de Broglie wavelength that matches that of the proton found in part a). b) Calculate the speed of this electron. c) Consider an electron and a proton with precisely the same momentum. How do their de Broglie wavelength’s compare?
What is the wavelength of the matter wave associated with a proton moving at 381 m/s?...
What is the wavelength of the matter wave associated with a proton moving at 381 m/s? wavelength of proton matter wave: 1.04×10^9 m What is the wavelength of the matter wave associated with a 151 kg astronaut (including her spacesuit) moving at the same speed? wavelength of astronaut matter wave: 1.15×10^-38 m What is the wavelength of the matter wave associated with Earth moving along its orbit around the Sun? wavelength of Earth matter wave: ??? m I got the...
In S, a moving proton has an energy of 4 GeV. S' is moving parallel to...
In S, a moving proton has an energy of 4 GeV. S' is moving parallel to the proton with a speed of 0.8c. Find the kinetic energy in each frame using four-vectors. Find the kinetic energy in each frame without four-vectors.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT