In: Nursing
A) Identify and discuss interventions/approaches that can be adopted by the healthcare industry to enhance the quality of life in view of the emergence and effects of the Coronavirus pandemic. In your answer, refer to the use of technology to achieve efficiency?
ABSTRACT
The unexpected pandemic set off by the novel coronavirus 2019 (COVID-19) has caused severe panic among people worldwide. COVID-19 has created havoc, and scientists and physicians are urged to test the efficiency and safety of drugs used to treat this disease. In such a pandemic situation, various steps have been taken by the government to control and prevent the Severe Acute Respiratory Syndrome coronavirus 2 (SARSCoV- 2). This pandemic situation has forced scientists to rework strategies to combat infectious diseases through drugs, treatment, and control measures. COVID-19 treatment requires both limiting viral multiplication and neutralizing tissue damage induced by an inappropriate immune reaction. Currently, various diagnostic kits to test for COVID-19 are available, and repurposing therapeutics for COVID-19 has shown to be clinically effective. As the global demand for diagnostics and therapeutics continues to rise, it is essential to rapidly develop various algorithms to successfully identify and contain the virus. This review discusses the updates on specimens/samples, recent efficient diagnostics, and therapeutic approaches to control the disease and repurposed drugs mainly focusing on chloroquine/hydroxychloroquine and convalescent plasma (CP). More research is required for further understanding of the influence of diagnostics and therapeutic approaches to develop vaccines and drugs for COVID-19A
INTERVENTIONS
or decades, leading scientists and influential professional societies have warned of the dangers of emerging infections and the specter of a global pandemic.1,2 The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent spread has lived up to and surpassed many of the warnings and has caused an evolving global public health and economic crisis. Significantly, no pharmaceutical agents are known to be safe and effective at preventing or treating coronavirus disease 2019 (COVID-19), the resulting illness.3 This leaves the medical and public health community with only nonpharmaceutical interventions (NPIs) to rely on for reducing the burden of COVID-19. These measures aim to reduce disease transmission both locally and globally and include bans on public gatherings, compulsory stay-at-home policies, mandating closures of schools and nonessential businesses, face mask ordinances, quarantine and cordon sanitaire (ie, a defined quarantine area from which those inside are not allowed to leave), among others. The effectiveness of NPIs has been studied theoretically,4 especially within the context of pandemic influenza, and also through analysis of historical observational data.5-7 A common finding of these studies is that implementing NPIs, especially when done rapidly after initial detection of a new contagious pathogen, can reduce transmission.
In a study published in JAMA, Pan et al8 examined the epidemiologic outcomes following implementation of NPIs during the COVID-19 outbreak in Wuhan, China, shortly after the disease was identified. From a cohort of 32 583 patients with laboratory-confirmed SARS-CoV-2 infection in Wuhan, the authors computed standardized number of infections per day per million people, effective reproduction numbers, and the proportion of severe disease in cases spanning the period December 2019 through early March 2020. Importantly, this time span was separated into 5 distinct periods, each characterized by different combinations and applications of public health measures: before January 10 (no intervention), January 10 to 22 (movement of large numbers of people for the Chinese New Year holiday), January 23 to February 1 (city lockdown with traffic restriction, home quarantine, cordons sanitaire), February 2 to 16 (intensified social distancing measures, centralized quarantine and treatment), and February 17 to March 8 (door-to-door and individual-to-individual community screening for symptoms in all residents).
Based on their sophisticated evaluation, Pan et al suggest that this series of multifaceted NPIs was associated with improved control of the COVID-19 outbreak in Wuhan. The daily confirmed case rate per million people increased from 2.0 before January 10, to 45.9 between January 10 and 22, and to 162.6 between January 23 and February 1. The rate then decreased to 77.9 between February 2 and 16 and to 17.2 after February 16. In addition, the proportion of severe or critical cases decreased gradually over time: 53.1%, 35.1%, 23.5%, 15.9%, and 10.3%, respectively, for the 5 periods.
The study is remarkable in several ways. Pan et al applied surveillance data to quantify the time evolution of COVID-19 transmission intensity through the different periods in their study. In doing so, they recognize the implicit goal of any contagious disease intervention: interrupt the chain of transmission by reducing the average number of cases caused by each infected individual over their infectious period, the effective reproduction number, Rt, to less than 1.0. The authors’ estimation of Rt throughout the study illustrates a striking association between NPIs employed in Wuhan, especially during the third period of their study when the city was under cordons sanitaire, automobile traffic was suspended, and quarantine of confirmed and presumptive cases and their close contacts were enforced. Given the delays the authors observed between symptom onset and laboratory confirmation and an incubation period of roughly 5 days,9 it is difficult to assert that additional interventions in periods 4 and 5 were necessary in driving Rt below 1.0, although transmission did continue to decline further as additional measures were implemented. Thus, it appears that strict travel restrictions and home quarantine were the dominant factors associated with reducing Rt to less than 1.0 in the early days of the Wuhan outbreak.
DIGITAL TECHNOLOGY RELATED TO COVID 19
WHO has received overwhelming pro-bono support from technology companies to fight the COVID-19 pandemic. On 2 April, 30 of the world’s leading digital technology experts gathered in a virtual roundtable to help advance WHO’s collaborative response to COVID-19.
This pandemic has triggered an unprecedented demand for digital health technology solutions and has revealed successful solutions such as for population screening, tracking the infection, prioritizing the use and allocation of resources, and designing targeted responses.
“We need your commitment, so we can turn those ideas into reality and work with public health agencies and frontline health workers to put this pandemic to rest,” said WHO Director-General, Dr. Tedros Adhanom Ghebreyesus, in his welcoming remark. “We can only tackle this global threat - and get our economy back on track - by working together