In: Advanced Math
1. (Euler’s method) First, work out the first three steps by hand. Then approximate y(2) for each of the initial value problems using Euler’s method, first with a step size of h = .1 and then with a step size of h = .05 using the Excel spreadsheet. (a) dy dx = 2xy, y(0) = 1 (b) dy dx = x − y x + 2y , y(0) = 1 (c) dy dx = y + x, y(0) = 1 ignore the excell sheet portion
h =0.1 | ||||
n | x_n | y_n | ||
0 | 0 | 1 | ||
1 | 0.1 | 1 | ||
2 | 0.2 | 1.02 | ||
3 | 0.3 | 1.0608 | ||
4 | 0.4 | 1.124448 | ||
5 | 0.5 | 1.214404 | ||
6 | 0.6 | 1.335844 | ||
7 | 0.7 | 1.496146 | ||
8 | 0.8 | 1.705606 | ||
9 | 0.9 | 1.978503 | ||
10 | 1 | 2.334633 | ||
11 | 1.1 | 2.80156 | ||
12 | 1.2 | 3.417903 | ||
13 | 1.3 | 4.2382 | ||
14 | 1.4 | 5.340132 | ||
15 | 1.5 | 6.835369 | ||
16 | 1.6 | 8.88598 | ||
17 | 1.7 | 11.72949 | ||
18 | 1.8 | 15.71752 | ||
19 | 1.9 | 21.37583 | ||
20 | 2 | 29.49864 |
h=0.05 | |||||
n | x_n | y_n | |||
0 | 0 | 1 | |||
1 | 0.05 | 1 | |||
2 | 0.1 | 1.005 | |||
3 | 0.15 | 1.01505 | |||
4 | 0.2 | 1.030276 | |||
5 | 0.25 | 1.050881 | |||
6 | 0.3 | 1.077153 | |||
7 | 0.35 | 1.109468 | |||
8 | 0.4 | 1.148299 | |||
9 | 0.45 | 1.194231 | |||
10 | 0.5 | 1.247972 | |||
11 | 0.55 | 1.31037 | |||
12 | 0.6 | 1.382441 | |||
13 | 0.65 | 1.465387 | |||
14 | 0.7 | 1.560637 | |||
15 | 0.75 | 1.669882 | |||
16 | 0.8 | 1.795123 | |||
17 | 0.85 | 1.938733 | |||
18 | 0.9 | 2.103525 | |||
19 | 0.95 | 2.292842 | |||
20 | 1 | 2.510662 | |||
21 | 1.05 | 2.761729 | |||
22 | 1.1 | 3.05171 | |||
23 | 1.15 | 3.387398 | |||
24 | 1.2 | 3.776949 | |||
25 | 1.25 | 4.230183 | |||
26 | 1.3 | 4.758956 | |||
27 | 1.35 | 5.37762 | |||
28 | 1.4 | 6.103599 | |||
29 | 1.45 | 6.958102 | |||
30 | 1.5 | 7.967027 | |||
31 | 1.55 | 9.162081 | |||
32 | 1.6 | 10.5822 | |||
33 | 1.65 | 12.27536 | |||
34 | 1.7 | 14.30079 | |||
35 | 1.75 | 16.73192 | |||
36 | 1.8 | 19.66001 | |||
37 | 1.85 | 23.19881 | |||
38 | 1.9 | 27.49059 | |||
39 | 1.95 | 32.71381 | |||
40 | 2 | 39.093 |
part(b):
h=0.1 | ||||
n | x_n | y_n | ||
0 | 0 | 1 | ||
1 | 0.1 | 1.2 | ||
2 | 0.2 | 1.438 | ||
3 | 0.3 | 1.71684 | ||
4 | 0.4 | 2.038703 | ||
5 | 0.5 | 2.404895 | ||
6 | 0.6 | 2.81563 | ||
7 | 0.7 | 3.269818 | ||
8 | 0.8 | 3.764894 | ||
9 | 0.9 | 4.296681 | ||
10 | 1 | 4.859316 | ||
11 | 1.1 | 5.445248 | ||
12 | 1.2 | 6.04532 | ||
13 | 1.3 | 6.648946 | ||
14 | 1.4 | 7.244372 | ||
15 | 1.5 | 7.819034 | ||
16 | 1.6 | 8.359986 | ||
17 | 1.7 | 8.854385 | ||
18 | 1.8 | 9.290017 | ||
19 | 1.9 | 9.655817 | ||
20 | 2 | 9.942375 |
h=0.05 | ||||
n | x_n | y_n | ||
0 | 0 | 1 | ||
1 | 0.05 | 1.1 | ||
2 | 0.1 | 1.20975 | ||
3 | 0.15 | 1.329676 | ||
4 | 0.2 | 1.460171 | ||
5 | 0.25 | 1.601587 | ||
6 | 0.3 | 1.754226 | ||
7 | 0.35 | 1.918335 | ||
8 | 0.4 | 2.094097 | ||
9 | 0.45 | 2.281625 | ||
10 | 0.5 | 2.480951 | ||
11 | 0.55 | 2.692022 | ||
12 | 0.6 | 2.914694 | ||
13 | 0.65 | 3.148723 | ||
14 | 0.7 | 3.393761 | ||
15 | 0.75 | 3.649356 | ||
16 | 0.8 | 3.914941 | ||
17 | 0.85 | 4.189837 | ||
18 | 0.9 | 4.473253 | ||
19 | 0.95 | 4.764282 | ||
20 | 1 | 5.061906 | ||
21 | 1.05 | 5.365002 | ||
22 | 1.1 | 5.672339 | ||
23 | 1.15 | 5.982595 | ||
24 | 1.2 | 6.294355 | ||
25 | 1.25 | 6.606129 | ||
26 | 1.3 | 6.916359 | ||
27 | 1.35 | 7.223431 | ||
28 | 1.4 | 7.525693 | ||
29 | 1.45 | 7.821464 | ||
30 | 1.5 | 8.109054 | ||
31 | 1.55 | 8.38678 | ||
32 | 1.6 | 8.652983 | ||
33 | 1.65 | 8.906043 | ||
34 | 1.7 | 9.144398 | ||
35 | 1.75 | 9.366564 | ||
36 | 1.8 | 9.571146 | ||
37 | 1.85 | 9.756858 | ||
38 | 1.9 | 9.922534 | ||
39 | 1.95 | 10.06715 | ||
40 | 2 | 10.18981 |
part(c):