Question

In: Statistics and Probability

Consider a regression model Yi=β0+β1Xi+ui and suppose from a sample of 10 observations you are provided...

Consider a regression model Yi=β0+β1Xi+ui and suppose from a sample of 10 observations you are provided the following information:

∑10i=1Yi=71;  ∑10i=1Xi=42;  ∑10i=1XiYi=308; ∑10i=1X2i=196

Given this information, what is the predicted value of Y, i.e.,Yˆ for x = 12?

1. 14

2. 11

3. 13

4. 12

5. 15

Solutions

Expert Solution

X Y XY
total sum 42.000 71.000 308.00 196.000
mean 4.2000 7.1000

SSxx =    Σx² - (Σx)²/n =   19.600
SSxy=   Σxy - (Σx*Σy)/n =   9.800

estimated slope , ß1 = SSxy/SSxx =   9.800   /   19.600   =   0.5000
                  
intercept,   ß0 = y̅-ß1* x̄ =   5.0000          
                  
so, regression line is   Ŷ =   5.00   +   0.50   *x

Predicted Y at X=   12   is                  
Ŷ =   5.000   +   0.500   *   12   =   11.000

option (2)

.........................

Please revert back in case of any doubt.

Please upvote. Thanks in advance.


Related Solutions

Consider the simple linear regression: Yi = β0 + β1Xi + ui whereYi and Xi...
Consider the simple linear regression: Yi = β0 + β1Xi + ui where Yi and Xi are random variables, β0 and β1 are population intercept and slope parameters, respectively, ui is the error term. Suppose the estimated regression equation is given by: Yˆ i = βˆ 0 + βˆ 1Xi where βˆ 0 and βˆ 1 are OLS estimates for β0 and β1. Define residuals ˆui as: uˆi = Yi − Yˆ i Show that: (a) (2 pts.) Pn i=1...
(i) Consider a simple linear regression yi = β0 + β1xi + ui Write down the...
(i) Consider a simple linear regression yi = β0 + β1xi + ui Write down the formula for the estimated standard error of the OLS estimator and the formula for the White heteroskedasticity-robust standard error on the estimated coefficient bβ1. (ii) What is the intuition for the White test for heteroskedasticity? (You do not need to describe how the test is implemented in practice.)
Consider the simple regression model: Yi = β0 + β1Xi + e (a) Explain how the...
Consider the simple regression model: Yi = β0 + β1Xi + e (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for β0 and β1are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of will decline as the sample size increases. Explain the importance of this.
Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the...
Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for β̂0 and β̂1 are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of β̂1 will decline as the sample size increases. Explain the importance of this.
Suppose you estimate the following regression model using OLS: Yi = β0 + β1Xi + β2Xi2...
Suppose you estimate the following regression model using OLS: Yi = β0 + β1Xi + β2Xi2 + β3Xi3+ ui. You estimate that the p-value of the F-test that β2= β3 =0 is 0.01. This implies: options: You can reject the null hypothesis that the regression function is linear. You cannot reject the null hypothesis that the regression function is either quadratic or cubic. The alternate hypothesis is that the regression function is either quadratic or cubic. Both (a) and (c).
Question 1: Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain...
Question 1: Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for !β̂ and !β̂ are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of β! ̂ will decline as the sample size increases. Explain the importance of this. Question 2: Consider the following...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get the following results: b0=-3.13437; SE(b0)=0.959254; b1=1.46693; SE(b1)=21.0213; R-squared=0.130357; and SER=8.769363. Note that b0 and b1 the OLS estimate of b0 and b1, respectively. The total number of observations is 2950.According to these results the relationship between C and Y is: A. no relationship B. impossible to tell C. positive D. negative 2. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this...
Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get...
Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get the following results: b0=-3.13437; SE(b0)=0.959254; b1=1.46693; SE(b1)=0.0697828; R-squared=0.130357; and SER=8.769363. Note that b0 and b1 the OLS estimate of b0 and b1, respectively. The total number of observations is 2950. The following values are relevant for assessing goodness of fit of the estimated model with the exception of A. 0.130357 B. 8.769363 C. 1.46693 D. none of these
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get the following results: b0=-3.13437; SE(b0)=0.959254; b1=1.46693; SE(b1)=0.0697828; R-squared=0.130357; and SER=8.769363. Note that b0 and b1 the OLS estimate of b0 and b1, respectively. The total number of observations is 2950. The number of degrees of freedom for this regression is A. 2952 B. 2948 C. 2 D. 2950 2. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS...
In a simple linear regression model yi = β0 + β1xi + εi with the usual...
In a simple linear regression model yi = β0 + β1xi + εi with the usual assumptions show algebraically that the least squares estimator β̂0 = b0 of the intercept has mean β0 and variance σ2[(1/n) + x̄2 / Sxx].
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT