In: Statistics and Probability
Consider a regression model Yi=β0+β1Xi+ui and suppose from a sample of 10 observations you are provided the following information:
∑10i=1Yi=71; ∑10i=1Xi=42; ∑10i=1XiYi=308; ∑10i=1X2i=196
Given this information, what is the predicted value of Y, i.e.,Yˆ for x = 12?
1. 14
2. 11
3. 13
4. 12
5. 15
| X | Y | XY | X² | |
| total sum | 42.000 | 71.000 | 308.00 | 196.000 | 
| mean | 4.2000 | 7.1000 | 
SSxx =    Σx² - (Σx)²/n =   19.600
SSxy=   Σxy - (Σx*Σy)/n =   9.800
estimated slope , ß1 = SSxy/SSxx =   9.800  
/   19.600   =   0.5000
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
5.0000          
          
       
so, regression line is   Ŷ =  
5.00   +   0.50   *x
Predicted Y at X=   12  
is          
       
Ŷ =   5.000   +   0.500  
*   12   =   11.000
option (2)
.........................
Please revert back in case of any doubt.
Please upvote. Thanks in advance.