Question

In: Economics

(i) Consider a simple linear regression yi = β0 + β1xi + ui Write down the...

(i) Consider a simple linear regression

yi = β0 + β1xi + ui

Write down the formula for the estimated standard error of the OLS estimator and the formula for the White heteroskedasticity-robust standard error on the estimated coefficient bβ1. (ii) What is the intuition for the White test for heteroskedasticity? (You do not need to describe how the test is implemented in practice.)

Solutions

Expert Solution

formula for the estimated standard error of the OLS estimator is as

estimated regression equation will be as

and now estimated standard error of the OLS estimator will be denoted by s.

where numerator is the sum of square of residuals computed from the estimation equation and given observations of x and y.

denomenator is the degrees of freedom where n is total observations and one is the intercept estimate which is excluded.

Now formula for white heteroskedasticity robust standard error on the slope coefficient would be firstly given is the variance of the OLS estimator for simple linear regression when population variance is known.

now when population variance is not known then we can replace it with corresponding least square error terms which would aid in deriving consistent estimator of the standard error.

white heteroskedasticity robust standard error is as

This is commonly used for large sample test.

The intuition for white test for heteroscedasticity is that it is an asymptotic test that estimated value tends to true parameters as sample size becomes large and that the ols estimates are consistent.


Related Solutions

Consider the simple linear regression: Yi = β0 + β1Xi + ui whereYi and Xi...
Consider the simple linear regression: Yi = β0 + β1Xi + ui where Yi and Xi are random variables, β0 and β1 are population intercept and slope parameters, respectively, ui is the error term. Suppose the estimated regression equation is given by: Yˆ i = βˆ 0 + βˆ 1Xi where βˆ 0 and βˆ 1 are OLS estimates for β0 and β1. Define residuals ˆui as: uˆi = Yi − Yˆ i Show that: (a) (2 pts.) Pn i=1...
In a simple linear regression model yi = β0 + β1xi + εi with the usual...
In a simple linear regression model yi = β0 + β1xi + εi with the usual assumptions show algebraically that the least squares estimator β̂0 = b0 of the intercept has mean β0 and variance σ2[(1/n) + x̄2 / Sxx].
Consider the simple regression model: Yi = β0 + β1Xi + e (a) Explain how the...
Consider the simple regression model: Yi = β0 + β1Xi + e (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for β0 and β1are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of will decline as the sample size increases. Explain the importance of this.
Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the...
Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for β̂0 and β̂1 are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of β̂1 will decline as the sample size increases. Explain the importance of this.
Suppose you estimate a simple linear regression Yi = β0 + β1Xi + ei. Next suppose...
Suppose you estimate a simple linear regression Yi = β0 + β1Xi + ei. Next suppose you estimate a regression only going through the origin, Yi = β ̃1Xi + ui. Which regression will give a smaller SSR (sum of squared residuals)? Why?
Question 1: Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain...
Question 1: Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for !β̂ and !β̂ are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of β! ̂ will decline as the sample size increases. Explain the importance of this. Question 2: Consider the following...
Consider a regression model Yi=β0+β1Xi+ui and suppose from a sample of 10 observations you are provided...
Consider a regression model Yi=β0+β1Xi+ui and suppose from a sample of 10 observations you are provided the following information: ∑10i=1Yi=71;  ∑10i=1Xi=42;  ∑10i=1XiYi=308; ∑10i=1X2i=196 Given this information, what is the predicted value of Y, i.e.,Yˆ for x = 12? 1. 14 2. 11 3. 13 4. 12 5. 15
3. Consider the simple linear regression Yi = 2Xi + ui for i = 1, 2,...
3. Consider the simple linear regression Yi = 2Xi + ui for i = 1, 2, . . . ,n. The ui are IID (0; 2 ). a. Derive OLS estimator of 2 and called it b 2 b. Find its variance c. Is b 2 unbiased, show it? d.What is the risk we run when we do not include an intercept in the regression? Do question d.
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + ui,=...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + ui,= (∗) transform the regression so that you can use a t-statistic to test a. β1 = β2 b. β1 + 2β2 = 0. c. β1 + β2 = 1. (Hint: You must redefine the dependent variable in the regression.)
Consider a simple linear regression model with nonstochastic regressor: Yi = β1 + β2Xi + ui...
Consider a simple linear regression model with nonstochastic regressor: Yi = β1 + β2Xi + ui . 1. [3 points] What are the assumptions of this model so that the OLS estimators are BLUE (best linear unbiased estimates)? 2. [4 points] Let βˆ 1 and βˆ 2 be the OLS estimators of β1 and β2. Derive βˆ 1 and βˆ 2. 3. [2 points] Show that βˆ 2 is an unbiased estimator of β2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT