Question

In: Advanced Math

Define the linear transformation S : Pn → Pn and T : Pn → Pn by...

Define the linear transformation S : Pn → Pn and T : Pn → Pn by S(p(x)) = p(x + 1), T(p(x)) = p'(x)

(a) Find the matrix associated with S and T with respect to the standard basis {1, x, x2} for P2 .

(b) Find the matrix associated with S ◦ T(p(x)) for n = 2 and for the standard basis {1, x, x2}. Is the linear transformation S ◦ T invertible?

(c) Is S a one-to-one transformation? Is it onto? What is the kernel and range of S? What is the rank and nullity of S? Verify the Rank Theorem.

(d) Is T a one-to-one transformation? Is it onto? What is the kernel and range of T? What is the rank and nullity of T? Verify the Rank Theorem.

Solutions

Expert Solution


Related Solutions

Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) =...
Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) = (2,3,-5) and T( e⃗2 ) = (-1,0,1). Determine the standard matrix of T. Calculate T( ⃗u ), the image of ⃗u=(4,2) under T. Suppose T(v⃗)=(3,2,2) for a certain v⃗ in R2 .Calculate the image of ⃗w=2⃗u−v⃗ . 4. Find a vector v⃗ inR2 that is mapped to ⃗0 in R3.
Find the rank and the nullity of the linear transformation: T : P2 → P1, T(?...
Find the rank and the nullity of the linear transformation: T : P2 → P1, T(? + ?? + ??^2) = (? + ?) + (? − ?)x
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine...
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine the eigenvalues of this linear transformation and their algebraic and geometric multiplicities.
. Let T : R n → R m be a linear transformation and A the...
. Let T : R n → R m be a linear transformation and A the standard matrix of T. (a) Let BN = {~v1, . . . , ~vr} be a basis for ker(T) (i.e. Null(A)). We extend BN to a basis for R n and denote it by B = {~v1, . . . , ~vr, ~ur+1, . . . , ~un}. Show the set BR = {T( r~u +1), . . . , T( ~un)} is a...
Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1...
Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1 + 2x2 , 2x1 + 4x2) a. Find the standard matrix of T. b. Find the ker(T) and nullity (T). c. Is T one-to-one? Explain.
The linear transformation is such that for any v in R2, T(v) = Av. a) Use...
The linear transformation is such that for any v in R2, T(v) = Av. a) Use this relation to find the image of the vectors v1 = [-3,2]T and v2 = [2,3]T. For the following transformations take k = 0.5 first then k = 3, T1(x,y) = (kx,y) T2(x,y) = (x,ky) T3(x,y) = (x+ky,y) T4(x,y) = (x,kx+y) For T5 take theta = (pi/4) and then theta = (pi/2) T5(x,y) = (cos(theta)x - sin(theta)y, sin(theta)x + cos(theta)y) b) Plot v1 and...
Consider the linear transformation T : P1 → R^3 given by T(ax + b) = [a+b...
Consider the linear transformation T : P1 → R^3 given by T(ax + b) = [a+b a−b 2a] a) find the null space of T and a basis for it (b) Is T one-to-one? Explain (c) Determine if w = [−1 4 −6] is in the range of T (d) Find a basis for the range of T and its dimension (e) Is T onto? Explain
Let T : Rn →Rm be a linear transformation. (a) If {v1,v2,...,vk} is a linearly dependent...
Let T : Rn →Rm be a linear transformation. (a) If {v1,v2,...,vk} is a linearly dependent subset of Rn, prove that {T(v1),T(v2),...,T(vk)} is a linearly dependent subset of Rm. (b) Suppose the kernel of T is {0}. (Recall that the kernel of a linear transformation T : Rn → Rm is the set of all x ∈ Rn such that T(x) = 0). If {w1,w2,...,wp} is a linearly independent subset of Rn, then show that {T(w1),T(w2),...,T(wp)} is a linearly independent...
By justifying your answer determine whether the function T is a linear transformation. T:P3→ P4defined as...
By justifying your answer determine whether the function T is a linear transformation. T:P3→ P4defined as T(a+bx+cx2+dx3)=b−ax+adx4 T:P3→ M2,2 defined as T(a+bx+cx2+dx3)= [−d,c,√3a,a+b] its a matrix
Exercise 2.5.1 Suppose T : R n ? R n is a linear transformation. Prove that...
Exercise 2.5.1 Suppose T : R n ? R n is a linear transformation. Prove that T is an isometry if and only if T(v) · T(w) = v · w. Recall that an isometry is a bijection that preserves distance.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT