Question

In: Physics

A finite rod of length LLL has total charge qqq, distributed uniformly along its length. The...

A finite rod of length LLL has total charge qqq, distributed uniformly along its length. The rod lies on the x -axis and is centered at the origin. Thus one endpoint is located at (−L/2,0)(−L/2,0), and the other is located at (L/2,0)(L/2,0). Define the electric potential to be zero at an infinite distance away from the rod. Throughout this problem, you may use the constant kkk in place of the expression 14πϵ014πϵ0.

Part A


What is VAVAV_A, the electric potential at point A (see the figure), located a distance ddd above the midpoint of the rod on the y axis?

Express your answer in terms of LLL, ddd, qqq, and kkk.

Part B

What is VBVBV_B, the electric potential at point BBB, located at distance ddd from one end of the rod (on the x axis)?

(Figure 2)

Give your answer in terms of qqq, LLL,

ddd, and kkk.

Solutions

Expert Solution


Related Solutions

- A charge of 22 nC is uniformly distributed along a straight rod of length 13...
- A charge of 22 nC is uniformly distributed along a straight rod of length 13 m that is bent into a circular arc with a radius of 5.6 m. What is the magnitude of the electric field at the center of curvature of the arc? - How much work is required to turn an electric dipole 180o in a uniform electric field of magnitude 42.2 N/C if p = 3.50 × 10-25 C·m and the initial angle is 62.8o....
Charge Q is uniformly distributed along a thin, flexible rod. The rod is then bent into...
Charge Q is uniformly distributed along a thin, flexible rod. The rod is then bent into a semicircle of radius R. Find an expression for the electric potential at the center of the semicircle.
A plastic rod of finite length carries a uniform linear charge Q = 10 μC along...
A plastic rod of finite length carries a uniform linear charge Q = 10 μC along the x- axis, with the left edge of the rod at the origin (0, 0) and its right edge at (4, 0) m. All distances are measured in meters. (a) Determine the net electric field at a point P (10,0) m, along the positive x-axis. (b) Apply integral methods to find the x- and y-components of the electric field vector due to this charged...
A circular ring of radius R with a total charge 2Q uniformly distributed along its circumference...
A circular ring of radius R with a total charge 2Q uniformly distributed along its circumference lies in the x y plane with its center at the origin. (a) Find the electric field at a point with coordinates (0, 0, z0). Show all steps in your calculation. Don’t forget to represent the field in vector form - magnitude and direction! (b) Find the locations along the z axis where the electric field has its largest values (don’t forget that because...
A line of charge 2.0 m long has 50.0 nC of charge uniformly distributed along it....
A line of charge 2.0 m long has 50.0 nC of charge uniformly distributed along it. (a) Calculate the electric field 0.25 m above the center of the line. (b) If the field point were moved from 0.25 m to 1.0 m, by what factor does the field increase/decrease? (c) How does this compare with moving the field point from 0.25 m to 1.0 m away from a point charge?
A charge per unit length λ = +6.00 μC/m is uniformly distributed along the positive y-axis...
A charge per unit length λ = +6.00 μC/m is uniformly distributed along the positive y-axis from y = 0 to y = +a = +0.400 m. A charge per unit length λ = -6.00 μC/m, is uniformly distributed along the negative y-axis from y = 0 to y = –a = -0.400 m. What is the magnitude of the electric field at a point on the x-axis a distance x = 0.271 m from the origin?
Suppose the length of a rod produced by a certain machine is uniformly distributed between 2.3...
Suppose the length of a rod produced by a certain machine is uniformly distributed between 2.3 and 2.8 metres. If the specification of the rod is to be between 2.25m to 2.75m, what proportion of rods from this manufacturer will fail to meet this specification? Suppose that the compressive strength of cement coming from a certain manufacturer can be modelled with a normal distribution with a mean of 6000 kilograms per square centimetre and a standard deviation of 100 kilograms...
Positive electric charge Q is distributed uniformly along a line in the shape of a semicircle...
Positive electric charge Q is distributed uniformly along a line in the shape of a semicircle of radius R lying in the upper half of the coordinate plane. Find the electric potential at the origin.
A rod of length L has a charge per unit length λ. The rod rotates around...
A rod of length L has a charge per unit length λ. The rod rotates around its center at angular frequency ω. Using the dipole approximation, find the power radiated by the rotating rod.
A uniformly charged, straight filament 3.60 m in length has a total positive charge of 2.00...
A uniformly charged, straight filament 3.60 m in length has a total positive charge of 2.00 µC. An uncharged cardboard cylinder 4.30 cm in length and 10.0 cm in radius surrounds the filament at its center, with the filament as the axis of the cylinder. (a) Using reasonable approximations, find the electric field at the surface of the cylinder. magnitude Does the presence of the cardboard tube affect the electric field at its surface? kN/C direction ---Select--- radially outward radially...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT