Question

In: Physics

Positive electric charge Q is distributed uniformly along a line in the shape of a semicircle...

Positive electric charge Q is distributed uniformly along a line in the shape of a semicircle of radius R lying in the upper half of the coordinate plane. Find the electric potential at the origin.

Solutions

Expert Solution

Total length of the semicircle is

Given charge Q is uniformly distributed, the linear charge density of the wire is

Consider the wire to be made of small charge elements of angular width . Consider one such element at angle as shown in the figure. The length of this charge element is . The charge on this element is

This element can be considered as a point charge. The electric potential of a point charge q at a distance r away from the charge is V=kq/r where . Therefore, the electric potential of the charge element is

To find the electric potential due to all such small elements of the wire, we integrate over these small elements.


Related Solutions

Charge Q is uniformly distributed along a thin, flexible rod. The rod is then bent into...
Charge Q is uniformly distributed along a thin, flexible rod. The rod is then bent into a semicircle of radius R. Find an expression for the electric potential at the center of the semicircle.
A line of charge 2.0 m long has 50.0 nC of charge uniformly distributed along it....
A line of charge 2.0 m long has 50.0 nC of charge uniformly distributed along it. (a) Calculate the electric field 0.25 m above the center of the line. (b) If the field point were moved from 0.25 m to 1.0 m, by what factor does the field increase/decrease? (c) How does this compare with moving the field point from 0.25 m to 1.0 m away from a point charge?
Work out what the combined electric field is for a line of charge and a semicircle...
Work out what the combined electric field is for a line of charge and a semicircle of a charge. Positive electric charge q1 is distributed uniformly in a semicircle of radius a. Have this semicircle to go from 0 degrees to 180 degrees standard angle. Negative charge of magnitude Q2 is uniformly distributed along a straight line of length 2a. This line is horizontal and parallel to the x axis. The line of charge is at a distance y greater...
Electric Field at a Point A -70nC charge is distributed uniformly along the x-axis from x...
Electric Field at a Point A -70nC charge is distributed uniformly along the x-axis from x = -0.8m to x = 2.6m. Consider a point at y = 1.5m on the y-axis. a) What is the x-component of the electric field at the point? b) What is the y-component of the electric field at the point? c) What is the total magnitude of the electric field at the point? Thank you
Under electrostatic condition electric charge Q = 17.7x10-9 C is uniformly distributed on the surface of...
Under electrostatic condition electric charge Q = 17.7x10-9 C is uniformly distributed on the surface of an isolated conducting sphere of radius R = 3 m. There is no other charge around. (a) What is the electric flux through a concentric spherical surface of radius 2R. (b) What is the electric potential at the surface of the conducting sphere? What is the electric field inside the conducting sphere? Please explain the steps and formuals .Mandatory !!
A charge per unit length λ = +6.00 μC/m is uniformly distributed along the positive y-axis...
A charge per unit length λ = +6.00 μC/m is uniformly distributed along the positive y-axis from y = 0 to y = +a = +0.400 m. A charge per unit length λ = -6.00 μC/m, is uniformly distributed along the negative y-axis from y = 0 to y = –a = -0.400 m. What is the magnitude of the electric field at a point on the x-axis a distance x = 0.271 m from the origin?
Charge q = + 15 nC is uniformly distributed on a spherical shell that has a...
Charge q = + 15 nC is uniformly distributed on a spherical shell that has a radius of 120 mm. 1. What is the magnitude of the electric field just outside the shell? (Express your answer with the appropriate units.) 2. What is the magnitude of the electric field just inside the shell? (Express your answer with the appropriate units.) 3. What is the direction of the electric field just outside and just inside the shell? a. radially inward just...
- A charge of 22 nC is uniformly distributed along a straight rod of length 13...
- A charge of 22 nC is uniformly distributed along a straight rod of length 13 m that is bent into a circular arc with a radius of 5.6 m. What is the magnitude of the electric field at the center of curvature of the arc? - How much work is required to turn an electric dipole 180o in a uniform electric field of magnitude 42.2 N/C if p = 3.50 × 10-25 C·m and the initial angle is 62.8o....
Density, density, density. (a) A charge -347e is uniformly distributed along a circular arc of radius...
Density, density, density. (a) A charge -347e is uniformly distributed along a circular arc of radius 4.30 cm, which subtends an angle of 44o. What is the linear charge density along the arc? (b) A charge -347e is uniformly distributed over one face of a circular disk of radius 3.10 cm. What is the surface charge density over that face? (c) A charge -347e is uniformly distributed over the surface of a sphere of radius 5.30 cm. What is the...
Density, density, density. (a) A charge -347e is uniformly distributed along a circular arc of radius...
Density, density, density. (a) A charge -347e is uniformly distributed along a circular arc of radius 4.30 cm, which subtends an angle of 44o. What is the linear charge density along the arc? (b) A charge -347e is uniformly distributed over one face of a circular disk of radius 3.10 cm. What is the surface charge density over that face? (c) A charge -347e is uniformly distributed over the surface of a sphere of radius 5.30 cm. What is the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT