Question

In: Psychology

Next, separate the participants into two groups by using range matching (decide on your acceptable ranges...

Next, separate the participants into two groups by using range matching (decide on your acceptable ranges in advance, for example, within 5 pounds).

a.)Match as many pairs of female participants as possible: find a match and randomly assign one to the first group, and the other to the second group. Next, do the same for the male participants.

b.)Next, match not only on gender, but also on weight.

c.)Finally, match the participants on all three variables.

3.) Finally, match the 40 participants on gender, weight, and height, using rank-ordered matching.

40 Participants to be matched:

Name                   Gender           Weight   (lbs.)   Height (in.)

#1. Anna BoFanna           F           110       60

2. Sandy Beach           F           140       70

3. Chuck Wagon           M           200       72

4. Ken Garoo               M           180       70

5. Seymour Clearly           M           190       71

6. Phil O’Dendron           M           210       74

7. Rhoda Dendron           F           120       65

8. Pete Moss               M           150       68

9. Howie Dooit           M           160       70

10. Willy Makeit           M           180       70

11. Betty Won’t               F           100       63

12. Al Gebra               M           190       72

13. Carol Ofthebells           F           95       55

14. Harold Bethyname           M           240       76

15. Andy Walkswithme           M           250       75

16. Rod Andreel           M           220       72

17. Stu   Potts               M           190       69

18. Sharon Sometimetogether       F           108       65

19. Clara Asabell           F           115       68

20. Allyson Wonderland       F           118       68

21. April Showers           F           110       63

22. Ben Dover               M           190       69

23. Hugh Gottabekiddinme       M           200       72

24. May Flowers           F           130       70

25. June Blossoms           F           100       60

26. Helen Highwater           F           135       68

27. Sam Iam               M           195       69

28. Mike Robiology           M           215       72

29. Maye Beeso               F           134       67

30. Polly Warner-Cracker       F           109       54

31. Rick O’Chet           M           140       64

32. Bill Board               M           180       70

33. I. C. Freeze               M           190       71

34. Barry Um               M           200       72

35. Raye Dium               F           112       67

36. Helena Baskit           F           114       66

37. Summer Rayne           F           96       65

38. Deniece Denephew           F           122       69

39. Goldie Lox               F           105       63

40. Cindy Rella               F           124       68

Solutions

Expert Solution

The groups we made are

a) Within 150 pounds         

b) more than 150 pounds              

gender

weight

height

gender

weight

height

F1             110                60

F2            140                  70

F3                120               65

M1             150                68

F4                100               63

F5             95                    55 F6             108               65

F7            115              68

F8          118              68

F9           110             63

F10          130               70

F 11          100            60

F12     135              68

F13         134              67

F14        109            54

M  2        140            64

F15        112          67

F16         114           66

F17           96             65

F18           122           69

F19         105           63

F20         124             68

M1           200       72

M2           180       70

M3         190       71

M4         210       74

M5           160       70

M6           180       70

M7           190       72

M8           240       76

M9           250       75

M10           220       72

M11           190       69

M12           190       69

M13           200       72

M14           195       69

M15           215       72

M16           180       70

M17           190       71

M18         200       72

RANGE MATCHING: GROUP-1 (90-110)(111-130)(131-150) ACCORDING TO WEIGHT AND HEIGHT GROUP-1 SINCE INBROUP 2 THERE ARE NO FEMALES.

RANGE-1 (F4 100 63)(F5 95 55) (F6 108 65) (F9 110   63) (F11 100   60) (F14 109  54) (F17           96             65) (F19         105           63)

RANGE-2 (F3                120               65) (F7            115              68) (F8          118              68) (F10          130               70) (F15        112          67) (F16         114           66) (F18           122           69) (F20         124             68)

RANGE-3 (F2            140                  70) (M1             150                68) (F12     135              68) (F13         134              67) (M2        140            64)

RANGE MATCHING: GROUP- (151-180)(181-210)(211-250) ACCORDING TO WEIGHT AND HEIGHT GROUP-2 SINCE IN GROUP 2 THERE ARE NO FEMALES.

RANGE-1 (M2           180       70) (M5           160       70) (M6           180       70) (M16           180       70)

RANGE-2 (M1           200       72) (M3         190       71) (M4         210       74) (M7           190       72) (M11           190       69) (M12           190       69) (M14           195       69)   (M17           190       71) (M18         200       72) (M13           200       72)

RANGE-3 (M8           240       76) (M9           250       75) (M10           220       72) (M15           215       72)

RANK ORDER MATCHING - (90-110)(111-130)(131-150) (151-180)(181-210)(211-250)

RANK1 (F4 100 63)(F5 95 55) (F6 108 65) (F9 110   63) (F11 100   60) (F14 109  54) (F17           96             65) (F19         105           63)

RANK2 (F3                120               65) (F7            115              68) (F8          118              68) (F10          130               70) (F15        112          67) (F16         114           66) (F18           122           69) (F20         124             68)

RANK3 (F2            140                  70) (M1             150                68) (F12     135              68) (F13         134              67) (M2        140            64)

RANK4 (M2           180       70) (M5           160       70) (M6           180       70) (M16           180       70)

RANK5 (M1           200       72) (M3         190       71) (M4         210       74) (M7           190       72) (M11           190       69) (M12           190       69) (M14           195       69)   (M17           190       71) (M18         200       72) (M13           200       72)

RANK6 (M8           240       76) (M9           250       75) (M10           220       72) (M15           215       72)


Related Solutions

your next assignment is about teams. teams are the same as groups, except that groups are...
your next assignment is about teams. teams are the same as groups, except that groups are informal, and teams are formal, groups elect their own leaders, and team leaders are assigned by the management of the company, and teams are specific to the company's tasks. examples of teams are quality control teams, and project teams. there are other examples of teams, and that is your first team assignment: find at least 5 examples of teams used by companies in the...
A group of volunteers are randomly divided into two groups. One group of participants takes a...
A group of volunteers are randomly divided into two groups. One group of participants takes a pill each morning for a year which contains antioxidants (Vitamins A, C, E, etc), while the other group takes a placebo pill for the same time period. Following this they are measured on a problem solving task given under stressful conditions. The number of errors is counted during solution. Results were: GROUP 1         GROUP 2 ANTIOXIDANTS PLACEBO (CONTROL) N = 14    ...
Data for the IFSAC Firefighter I examination test scores for two separate groups are found below....
Data for the IFSAC Firefighter I examination test scores for two separate groups are found below. A random sample of firefighters is selected for each group. Group 1 attended the State Fire Academy for their training and Group 2 attended an in-house academy. The groups are only tested once after they have received the training. All participants have no prior experience in the fire service. Assume normality of the populations. Group 1 Group 2 99 55 89 72 80 83...
In using published pay surveys to assess your organization’s pay ranges, the least difficult task is:...
In using published pay surveys to assess your organization’s pay ranges, the least difficult task is: a. Identifying the best pay survey. b. Matching your organization’s positions to pay survey positions. c. Finding the median rate in the published pay surveys. d. Assuring the pay survey includes data sorts that match your organization’s: geographic; budget; type organization; and number of employees.
Our next optimization comes from using the brilliant Rabin-Karp substring matching algorithm (RK for short), invented...
Our next optimization comes from using the brilliant Rabin-Karp substring matching algorithm (RK for short), invented in the eighties by two famous computer scientists, Michael Rabin and Richard Karp 3. RK checks if a given query string P appears as a substring in Y. At a high level, RK works by computing a hash for the query string, hash(P ), as well as a hash for each of the n − k + 1substrings of length k in Y, hash(Y...
In this assignment you will practice using the pattern-matching constructs described in chapter 7 of your...
In this assignment you will practice using the pattern-matching constructs described in chapter 7 of your textbook to write several short SML functions. If at all possible, write all functions using pattern-matching constructs.  Include your name as a comment in the file, like this (* John Q Adams *). To reiterate - Use the pattern matching constructs described in chapter 7 to define your functions. Do the two steps below: Download the following file to a folder. It contains dummy, hence...
1. What two groups are you comparing? What variable are you using for your comparison? Tall...
1. What two groups are you comparing? What variable are you using for your comparison? Tall vs Short. Discrete Variable 2. Use our class data to select a sample for each of your groups. Describe, in detail, how you created your sample. You should include: a. The statistical name of your sampling method b. Detailed description of how you created your samples c. A list of observation numbers and actual data for each of your samples - Create 4 different...
Use 2 separate groups to create two population mean estimates. Ask a group of friends how...
Use 2 separate groups to create two population mean estimates. Ask a group of friends how much time (in hours) they spent on social media throughout the previous day. Divide this group into two subgroups, and calculate the mean and standard deviation for both. Use the appropriate formula to construct a confidence interval to estimate the population mean. Then develop a main response in which you address the following: Present the confidence intervals you constructed from both subgroups (samples). Compare...
Your friend Harold is trying to decide whether to buy or lease his next vehicle. He...
Your friend Harold is trying to decide whether to buy or lease his next vehicle. He has gathered information about each option but is not sure how to compare the alternatives. Purchasing a new vehicle will cost $34,500, and Harold expects to spend about $1,300 per year in maintenance costs. He would keep the vehicle for five years and estimates that the salvage value will be $13,700. Alternatively, Harold could lease the same vehicle for five years at a cost...
Your friend Harold is trying to decide whether to buy or lease his next vehicle. He...
Your friend Harold is trying to decide whether to buy or lease his next vehicle. He has gathered information about each option but is not sure how to compare the alternatives. Purchasing a new vehicle will cost $31,500, and Harold expects to spend about $1,000 per year in maintenance costs. He would keep the vehicle for five years and estimates that the salvage value will be $12,500. Alternatively, Harold could lease the same vehicle for five years at a cost...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT