Question

In: Finance

A futures price is currently 50. At the end of six months it will be either...

A futures price is currently 50. At the end of six months it will be either 56 or 45. The risk-free interest rate is 3% per annum (continuously compounded). What is the value of a six-month European put option with a strike price of 49? How would you hedge this option if you bought it? Please show all work and also how you would hedge it

Solutions

Expert Solution

Payoff table of Put option with strike price of $49:

Price after 6-months

Value of put option [Strike price ($49) – price]

Move up (u=$56/$50 =1.12)

$56

$0(price is above the strike price so option will not exercise)

Current Price of stock($50)

Move down (d=$45/$50=0.9)

$45

$4

Probability of moving up, P = e ^r*t – d / (u-d)

Where

Risk free rate, r = 3% per year or 0.03

Time period, t = 6-months or ½ years

Factor of moving up, u = 1.12

Factor of moving down, d = 0.9

Therefore,

P = [e^ (0.03*1/2) – 0.9] / (1.12 -0.9)

P = 0.52324

And (1- P) = 1- 52324 = 0.47676 (probability of moving down)

Now the expected value of put option

= e^ - (0.03*1/2) * (1-P) * $ 4

= 0.9851 *0.47676 *$4

= $ 1.8786

Therefore the value of the put option is $1.88

The hedge ratio of the put can be calculated in following manner -

When uS0 = $56 then Pu = $ 0

When d S0 = $45 then Pd = $4 (as the strike price is X = $49)

Now Hedge ratio H = (Pu – Pd) / (uS0 – dS0)

= (0 - $4) / ($56 - $45) = - 4 / 11

Form a portfolio of four shares of stock and 11 puts.

Portfolio (riskless)

ST = $45

ST = $56

Value of 4 shares

$180

$224

Value of 11 puts

$44

$ 0

Total

$224

$224

Therefore payoff to the portfolio is $224 in both situations


Related Solutions

A futures price is currently 50. At the end of six months it will be either...
A futures price is currently 50. At the end of six months it will be either 56 or 45. The risk-free interest rate is 3% per annum (continuously compounded). What is the value of a six-month European put option with a strike price of 49? How would you hedge this option if you bought it?
A futures price is currently 50. At the end of six months it will be either...
A futures price is currently 50. At the end of six months it will be either 56 or 45. The risk-free interest rate is 3% per annum (continuously compounded). What is the value of a six-month European put option with a strike price of 49? How would you hedge this option if you bought it? Please show the steps
:A stock price is currently $50. It is known that at the end of six months...
:A stock price is currently $50. It is known that at the end of six months it will be either $52 or $48. The risk-free interest rate is 5% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of $50? Verify that no-arbitrage arguments and risk-neutral valuation arguments give the same answers. .
A futures price is currently 120. It is known that at the end of three months...
A futures price is currently 120. It is known that at the end of three months the price will be either 100 or 140. What is the value of a three-month European call option on the futures with a strike price of 122 if the risk-free interest rate is 5% per annum (continuously compounded)? How would you hedge this option if you sold it? please show all work
A stock currently sells for $50. In six months it will either rise to $60 or...
A stock currently sells for $50. In six months it will either rise to $60 or decline to $45. The continuous compounding risk-free interest rate is 5% per year. a) Find the value of a European call option with an exercise price of $50. b) Find the value of a European put option with an exercise price of $50, using the binomial approach. c) Verify the put-call parity using the results of Questions 1 and 2.
Problem 2: A stock currently sells for $50. In six months it will either rise to...
Problem 2: A stock currently sells for $50. In six months it will either rise to $60 or decline to $45. The continuous compounding risk-free interest rate is 5% per year. Using the binomial approach, find the value of a European call option with an exercise price of $50. Using the binomial approach, find the value of a European put option with an exercise price of $50. Verify the put-call parity using the results of Questions 1 and 2.
A stock price is currently $50. It is known that at the end of two months...
A stock price is currently $50. It is known that at the end of two months it will be either $53 or $48. The risk-free interest rate is 10% per annum with continuous compounding. Use no arbitrage arguments. a) Whatisthevalueofatwo-monthEuropeanputoptionwithastrikepriceof$50? b) How would you hedge a short position in the option?
A stock price is currently $50. It is known that at the end of two months...
A stock price is currently $50. It is known that at the end of two months it will be either $53 or $48. The risk-free interest rate is 10% per annum with continuous compounding. What is the value of a two-month European call option with a strike price of $49?
A stock price is currently $50. It is known that at the end of three months,...
A stock price is currently $50. It is known that at the end of three months, it will be either $55 or $45. The risk-free interest rate is 12% per annum with continuous compounding. What is the value of a three-month European call option with a strike price of $51?
Suppose Ford's stock price is currently $10, and in the next six months it will either...
Suppose Ford's stock price is currently $10, and in the next six months it will either fall to $8 or rise to $15. The six-month risk-free interest rate is 1% (it is not the yearly rate). What is the current value of a six-month call option with an exercise price of $10? Explain your answer. Note: std of the u and d are not needed...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT