In: Finance
A stock price is currently $50. It is known that at the end of two months it will be either $53 or $48. The risk-free interest rate is 10% per annum with continuous compounding. What is the value of a two-month European call option with a strike price of $49?
Strike price = | $49.00 | |||||
Current Market price = | $50.00 | |||||
Risk-free rate = 10% per annum or 0.10 |
||||||
Rate for 2 month 10*2/12 = | 0.01666666667 | |||||
Continuous compounding rate formula (e^0.0166667)= (r)^1/ 1 + (r)^2 / (2*1) + (r)^3 / (3*2*1) + (r)^4 / (4*3*2*1) |
||||||
(0.0166667)^1 /1 + ((0.0166667)^2 / (2*1) + ((0.0166667)^3 / (3*2*1) + ((0.0166667)^4 / (4^3*2*1) |
||||||
0.01680633038 | ||||||
Value of call option = Strike price - Stock price (subject to 0) |
||||||
Upside Stock price = | 53 | |||||
Value of call option = 53 - 49= | $4.00 | |||||
Downside Stock price | 48 | |||||
Value of Call option = 48-49 =0 |
||||||
Call detlta = (VC at upper - VC at lower)/(Upper value - downside value) |
||||||
(4-0) / (53-48) |
||||||
0.80 | ||||||
Value of Call option = ( Current market price -Present value of downside value) * Call delta |
||||||
present value of downside value = Downside value/(1+i) |
||||||
48/(1+0.01680633) | 47.20662978 | |||||
So, VC = (50 - 47.2066297)*0.80 |
||||||
$2.23 | ||||||
So, value of call option is $2.23. |