Question

In: Physics

Find the current density necessary to float a copper wire in Earth’s magnetic field. Assume the...

Find the current density necessary to float a copper wire in Earth’s magnetic field. Assume the experiment to be done at the Earth’s magnetic equator in a field of 10?4 T. Use nominal density of copper in g/cm^3.

Solutions

Expert Solution

For the wire to float in the midair, it net force on it vertically should be zero.

Upward force due to the magnetic field = BILsin90

downward force due to gravity = mg

so, mg = BIL

mass m = volume x density

and assuming the wire to be cylindrical,

so,

=>

where J is the current density

density of copper wire: 8.96 g/cm3 and g = 9.8 m/s2 = 980 cm/s2

so,

substitute the value of B to get the current density in A/cm2 .


Related Solutions

An infinitely long wire carries current I. Find the magnetic field due to this current. Find...
An infinitely long wire carries current I. Find the magnetic field due to this current. Find the vector potential A. Verify that your vector potential from part b produces your answer to part a.
Create a diagram of a current-carrying wire in a magnetic field. Draw the field lines and...
Create a diagram of a current-carrying wire in a magnetic field. Draw the field lines and explain how the direction of force acting on the wire is determined. #- Create a sketch of the experiment Michael Faraday performed, label all the parts, and write a brief explanation of how motion is created. thank you
What is the direction of the magnetic field of a straight, current-carrying wire?
What is the direction of the magnetic field of a straight, current-carrying wire?
A loop of wire carries a current. The resulting magnetic field __________. points toward the loop...
A loop of wire carries a current. The resulting magnetic field __________. points toward the loop at all points points away from the loop at all points is similar to that of a bar magnet in the plane of the loop is similar to that of a bar magnet perpendicular to the plane of the loop
how would you use a loop of wire and a magnetic field to generate current in...
how would you use a loop of wire and a magnetic field to generate current in a loop? That is, discuss practical ways to change the magnetic flux through the loop. Relate this to how the electrical generators work that provides electrical power to your home
3) How is the Earth’s magnetic field generated and explain the theory of magnetic reversals? How...
3) How is the Earth’s magnetic field generated and explain the theory of magnetic reversals? How often does this occur and are there any observed patterns?
The magnetic field at a distance ro from a long straight wire carrying a current I...
The magnetic field at a distance ro from a long straight wire carrying a current I is given by B=u0I/2PI ro . For the statements below, circle the word or phrase that correctly completes the sentence. A) For a fixed current of 3.00 A in the wire, the magnetic field sensed by a Hall probe will _________________ if the distance r0is changed from 0.6 cm to 1.2 cm. (double, triple, reduce to half, reduce by 0.6 mT) B) If the...
Find the magnetic field a distance r from the center ofa long wire that has...
Find the magnetic field a distance r from the center of a long wire that has radius a and carries a uniform current per unit area j in the positive z-direction.PART AFirst find the magnetic field, B? out(r? ),outside the wire (i.e., when the distance ris greater than a). (Figure 1)Express B? out(r? ) in terms of the given parameters, the permeability constant ?0, the variables a, j (the magnitude of j? ), r,?, and z, and the corresponding unit...
The magnetic field 38.0 cm away from a long, straight wire carrying current 4.00 A is...
The magnetic field 38.0 cm away from a long, straight wire carrying current 4.00 A is 2110 nT. (a) At what distance is it 211 nT? 380 cm (b) At one instant, the two conductors in a long household extension cord carry equal 4.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 38.0 cm away from the middle of the straight cord, in the plane of the two wires. 16.6 nT (c) At...
The magnetic field 39.0 cm away from a long, straight wire carrying current 4.00 A is...
The magnetic field 39.0 cm away from a long, straight wire carrying current 4.00 A is 2050 nT. (a) At what distance is it 205 nT? cm (b) At one instant, the two conductors in a long household extension cord carry equal 4.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 39.0 cm away from the middle of the straight cord, in the plane of the two wires. nT (c) At what distance...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT