Question

In: Physics

An infinitely long wire carries current I. Find the magnetic field due to this current. Find...

  1. An infinitely long wire carries current I.
    1. Find the magnetic field due to this current.
    2. Find the vector potential A.
    3. Verify that your vector potential from part b produces your answer to part a.

Solutions

Expert Solution


Related Solutions

A long horizontal conducting wire carries current due east. It is place into very strong magnetic...
A long horizontal conducting wire carries current due east. It is place into very strong magnetic field and as result it levitates. What is direction of magnetic field? a. North b. South c. Up d. Down e. East f. West
The magnetic field at a distance ro from a long straight wire carrying a current I...
The magnetic field at a distance ro from a long straight wire carrying a current I is given by B=u0I/2PI ro . For the statements below, circle the word or phrase that correctly completes the sentence. A) For a fixed current of 3.00 A in the wire, the magnetic field sensed by a Hall probe will _________________ if the distance r0is changed from 0.6 cm to 1.2 cm. (double, triple, reduce to half, reduce by 0.6 mT) B) If the...
A loop of wire carries a current. The resulting magnetic field __________. points toward the loop...
A loop of wire carries a current. The resulting magnetic field __________. points toward the loop at all points points away from the loop at all points is similar to that of a bar magnet in the plane of the loop is similar to that of a bar magnet perpendicular to the plane of the loop
find the field inside and outside of an infinitely long solenoid carrying a steady current I....
find the field inside and outside of an infinitely long solenoid carrying a steady current I. find the vector potential of the solenoid given in question.
True/False 1) A wire carrying current due east in a magnetic field is deflected due north....
True/False 1) A wire carrying current due east in a magnetic field is deflected due north. The magnetic field must have a component that points into the ground 2) The self-inductance of a solenoid depends on the geometry of the solenoid and is independent of the current flowing through it 3) A horizontal bar that is oriented east to west is pulled vertically upward through a magnetic field that points due north. The east end of the bar is at...
Find the magnetic field a distance r from the center ofa long wire that has...
Find the magnetic field a distance r from the center of a long wire that has radius a and carries a uniform current per unit area j in the positive z-direction.PART AFirst find the magnetic field, B? out(r? ),outside the wire (i.e., when the distance ris greater than a). (Figure 1)Express B? out(r? ) in terms of the given parameters, the permeability constant ?0, the variables a, j (the magnitude of j? ), r,?, and z, and the corresponding unit...
Find the current density necessary to float a copper wire in Earth’s magnetic field. Assume the...
Find the current density necessary to float a copper wire in Earth’s magnetic field. Assume the experiment to be done at the Earth’s magnetic equator in a field of 10?4 T. Use nominal density of copper in g/cm^3.
1. A long cable has current I. If the magnitude of the magnetic field at a...
1. A long cable has current I. If the magnitude of the magnetic field at a distance d is B, determine the magnitude of the magnetic field at a distance 2d from the cable. a. 2B b. 8B c. 4B d. B / 2 e. B / 4 QUESTION 2 1. A circular cable consists of 5 loops with a diameter of 1.0 m each. The cable is placed in an external magnetic field of 0.5 T. When the cable...
Using Ampere’s law derive the formula for the magnetic field for the infinitely long solenoid of...
Using Ampere’s law derive the formula for the magnetic field for the infinitely long solenoid of radius R.
Create a diagram of a current-carrying wire in a magnetic field. Draw the field lines and...
Create a diagram of a current-carrying wire in a magnetic field. Draw the field lines and explain how the direction of force acting on the wire is determined. #- Create a sketch of the experiment Michael Faraday performed, label all the parts, and write a brief explanation of how motion is created. thank you
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT