Question

In: Chemistry

Consider the reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.65 L flask at a certain temperature...

Consider the reaction:


H2(g)+I2(g)⇌2HI(g)


A reaction mixture in a 3.65 L flask at a certain temperature initially contains 0.764 g H2 and 97.0 g I2. At equilibrium, the flask contains 90.5 g HI.

Calculate the equilibrium constant (Kc) for the reaction at this temperature.

Kc = ?

Solutions

Expert Solution

Answer – Given, mass of H2 = 0.746 g , mass of I2 = 97.0 g , volume = 3.65 L

At equilibrium, HI = 90.5 g

First we need to calculate the moles of each –

Moles of H2 = 0.746 g / 2.016 g.mol-1

                    = 0.370 moles

Moles of I2 = 97.0 g / 253.8 g.mol-1

                    = 0.382 moles

Moles of HI = 90.5 g / 127.91 g.mol-1

                    = 0.707 moles

Now. [H2] = 0.370 moles / 3.65 L

                  = 0.101 M

[I2] = 0.382 moles / 3.65 L

           = 0.105 M

[HI] = 0.707 moles / 3.65 L

           = 0.194 M

Now we need to put ICE chart

    H2 (g)   +    I2 (g) <----> 2HI(g)

I   0.101    0.105             0

C -x        -x                +2x

E 0.101-x    0.105-x     0.194

So, at equilibrium [HI] = 0.194

2x = 0.194

So, x = 0.0969 M

So, at equilibrium,

[H2] = 0.101-x

          = 0.101-0.0969

            = 0.00446 M

[H2] = 0.105-x

          = 0.151-0.0969

            = 0.00779 M

So, Kc = [HI]2 / [H2] [I2]

            = (0.194)2 / (0.00446) (0.00779)

           = 1082


Related Solutions

Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain temperature initially contains 0.767 g H2 and 96.8 g I2. At equilibrium, the flask contains 90.2 g HI.calculate the equillibrium constant (Kc) for the reaction at this temperature. please show work
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.68 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.68 L flask at a certain temperature initially contains 0.767 g H2 and 96.9 g I2. At equilibrium, the flask contains 90.4 g HI. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature. Express your answer using two significant figures.
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain temperature initially contains 0.767 g H2 and 96.9 g I2. At equilibrium, the flask contains 90.6 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature. Express your answer using two significant figures.
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain temperature initially contains 0.766 g H2 and 96.8 g I2. At equilibrium, the flask contains 90.2 g HI. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature. Express your answer using two significant figures. Kc= nothing SubmitPrevious AnswersRequest Answer
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.64 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.64 L flask at a certain temperature initially contains 0.765 g H2 and 97.0 g I2. At equilibrium, the flask contains 90.3 g HI. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature. please round to two digits
Consider the following reaction: H2(g)+I2(g)?2HI(g) A reaction mixture in a 3.68 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)?2HI(g) A reaction mixture in a 3.68 L flask at a certain temperature initially contains 0.761 g H2 and 96.9 g I2. At equilibrium, the flask contains 90.3 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature.
Consider the following reaction: H2(g) + I2(g) ⇌ 2HI(g) At a particular temperature, a reaction mixture...
Consider the following reaction: H2(g) + I2(g) ⇌ 2HI(g) At a particular temperature, a reaction mixture at equilibrium contains pressures of H2 = 0.958 atm, I2 = 0.877 atm, and HI = 0.020 atm. At the same temperature, a second reaction mixture (not at equilibrium) contains pressures of H2 = 0.621 atm, I2 = 0.621 atm, and HI = 0.101 atm. What will be the partial pressure of HI when the second reaction mixture reaches equilibrium? a) 0.0144 atm b)...
At a certain temp, the equilibrium constant for this reaction is 53.3. H2(g)+I2(g)=2HI(g) At this temperature,...
At a certain temp, the equilibrium constant for this reaction is 53.3. H2(g)+I2(g)=2HI(g) At this temperature, 0.7 mol of H2 and 0.7 mol of I2 were placed in a 1 L container. What is the concentration of HI present at equilibrium?
For the reaction H2(g)+I2(g)⇌2HI(g), Kc = 55.3 at 700 K. In a 2.00-L flask containing an...
For the reaction H2(g)+I2(g)⇌2HI(g), Kc = 55.3 at 700 K. In a 2.00-L flask containing an equilibrium mixture of the three gases, there are 0.057 g H2 and 4.39 g I2. Part A What is the mass of HI in the flask? Express your answer to two significant figures and include the appropriate units.
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15-L flask at a certain temperature...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15-L flask at a certain temperature initially contains 26.7 g CO and 2.32 g H2. At equilibrium, the flask contains 8.65 gCH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT