Question

In: Chemistry

Consider the following reaction: H2(g) + I2(g) ⇌ 2HI(g) At a particular temperature, a reaction mixture...

Consider the following reaction: H2(g) + I2(g) ⇌ 2HI(g) At a particular temperature, a reaction mixture at equilibrium contains pressures of H2 = 0.958 atm, I2 = 0.877 atm, and HI = 0.020 atm. At the same temperature, a second reaction mixture (not at equilibrium) contains pressures of H2 = 0.621 atm, I2 = 0.621 atm, and HI = 0.101 atm. What will be the partial pressure of HI when the second reaction mixture reaches equilibrium?

a) 0.0144 atm

b) 0.0433 atm

c) 0.0577 atm

d) 0.101 atm

Solutions

Expert Solution

from 1st reaction pressures:

Kp = p(HI)^2 / p(H2)*p(I2)

Kp = 0.020^2 / (0.958*0.877)

Kp = 4.761*10^-4

For the one that is not at equilibrium:

Qp = p(HI)^2 / p(H2)*p(I2)

Qp = 0.101^2 / (0.621*0.621)

Qp = 2.64*10^-2

Since Qp is greater than Kp, equilibrium will move to left

H2 (g) + I2 (g)   <—> 2HI (g)

0.621   0.621       0.101   (initial)

0.621+x   0.621+x       0.101-2x (at equilibrium)

Kp = p(HI)^2 / p(H2)*p(I2)

4.761*10^-4 = (0.101-2x)^2 / (0.621+x)^2

sqrt(4.761*10^-4) = (0.101-2x) / (0.621+x)

0.0218 = (0.101-2x) / (0.621+x)

0.0135 + 0.0218*x = 0.101 - 2x

2.0218*x = 0.0875

x = 4.33*10^-2 atm

At equilibrium

p(HI) = 0.101 - 2x = 0.101 - 2*(4.33*10^-2) = 0.0144 atm

Answer: a


Related Solutions

Consider the reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.65 L flask at a certain temperature...
Consider the reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.65 L flask at a certain temperature initially contains 0.764 g H2 and 97.0 g I2. At equilibrium, the flask contains 90.5 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature. Kc = ?
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain temperature initially contains 0.767 g H2 and 96.8 g I2. At equilibrium, the flask contains 90.2 g HI.calculate the equillibrium constant (Kc) for the reaction at this temperature. please show work
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.68 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.68 L flask at a certain temperature initially contains 0.767 g H2 and 96.9 g I2. At equilibrium, the flask contains 90.4 g HI. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature. Express your answer using two significant figures.
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain temperature initially contains 0.767 g H2 and 96.9 g I2. At equilibrium, the flask contains 90.6 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature. Express your answer using two significant figures.
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.74 L flask at a certain temperature initially contains 0.766 g H2 and 96.8 g I2. At equilibrium, the flask contains 90.2 g HI. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature. Express your answer using two significant figures. Kc= nothing SubmitPrevious AnswersRequest Answer
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.64 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.64 L flask at a certain temperature initially contains 0.765 g H2 and 97.0 g I2. At equilibrium, the flask contains 90.3 g HI. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature. please round to two digits
Consider the following reaction: H2(g)+I2(g)?2HI(g) A reaction mixture in a 3.68 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)?2HI(g) A reaction mixture in a 3.68 L flask at a certain temperature initially contains 0.761 g H2 and 96.9 g I2. At equilibrium, the flask contains 90.3 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature.
For the following reaction: H2(g) + I2(g)<--->2HI(g)     ; Kc=49.5 The beginning concentrations are: H2: 0.10M, I2:...
For the following reaction: H2(g) + I2(g)<--->2HI(g)     ; Kc=49.5 The beginning concentrations are: H2: 0.10M, I2: 0.050M, and HI:0 Assume this reaction is not at equilibrium. When it does reach equilibrium, what will the concentrations be?
At a certain temp, the equilibrium constant for this reaction is 53.3. H2(g)+I2(g)=2HI(g) At this temperature,...
At a certain temp, the equilibrium constant for this reaction is 53.3. H2(g)+I2(g)=2HI(g) At this temperature, 0.7 mol of H2 and 0.7 mol of I2 were placed in a 1 L container. What is the concentration of HI present at equilibrium?
Consider the following reaction: H2(g)+I2(g)?2HI(g) The data in the table show the equilibrium constant for this...
Consider the following reaction: H2(g)+I2(g)?2HI(g) The data in the table show the equilibrium constant for this reaction measured at several different temperatures. Temperature Kp 150 K 1.4×10?6 175 K 4.6×10?6 200 K 3.6×10?2 225 K 1.1 250 K 15.5 Use the data to find ?H?rxn and ?S?rxn for the reaction.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT