Question

In: Physics

An infinitely long right circular cylinder has radius ?. There is a non-constant cylindrically symmetric volume...

An infinitely long right circular cylinder has radius ?. There is a non-constant cylindrically symmetric volume charge density ?(?), where ? is the (radial) distance from the axis of the cylinder, given by ?(?) = ((?0*?)/?)sin((2??)/?), where ?0 is a constant.

1. Consider a concentric cylinder with radius ? and length ?. Compute the total charge ?(?) inside the cylinder for 0 < ? < ? and for ? > ?.

2. Go back to the infinite cylinder setup and compute the electric field ?(?) for all ? > 0. Explain why the electric field does not have an azimuthal component, i.e., ̂? ⋅ ? = 0. In this problem ,̂? ̂? and ̂? are the unit vectors associated with cylindrical coordinates (?, ?, ?).

Can you please write out a detailed solution. Thank you.

Solutions

Expert Solution


The direction of the electric field is radial. Hence in vector form,

if r<R

and 0 if r>R


Related Solutions

1. An infinitely long non-conducting right-circular cylinder of radius a, oriented concentrically with the z-axis, carries...
1. An infinitely long non-conducting right-circular cylinder of radius a, oriented concentrically with the z-axis, carries uniform charge density ?0. It is surrounded concentrically by an infinite long grounded right-circular conducting cylindrical shell of inner radius b and outer radius c. Ground potential is zero. (a) (4 points) What is the linear charge density (charge per unit length) ? of the inner nonconducting cylinder. (b) (4 points) What are the linear charge densities (charge per unit length) ? on the...
An infinitely long, solid non-conducting rod (cylinder) with circular cross section of radius a has its...
An infinitely long, solid non-conducting rod (cylinder) with circular cross section of radius a has its axis along the z-axis. It has a non-uniform volume charge density given in cylindrical coordinates by ρ(s) = C (s/a)^2 ,where C is a positive constant. In addition, there is a uniform volume charge density −σ on the outer cylindrical shell of radius b, where σ is a positive constant. Region 2 is a vacuum. For parts (a) through (c), use Gauss’ Law and...
The volume of a right circular cylinder with base radius ? and height ℎ is given...
The volume of a right circular cylinder with base radius ? and height ℎ is given by: ? = ??^2ℎ. If the base radius is decreasing at a rate of 3 inches per minute and the height is increasing at a rate of 2 inches per minute, at what rate is the volume of the cylinder changing when the radius is 8 inches and the height is 3 inches. Will the volume be increasing or decreasing at this instant? Be...
​An infinitely long solid insulating cylinder of radius a = 2.2 cm
An infinitely long solid insulating cylinder of radius a = 2.2 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 48 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 18.3 cm, and outer radius C =20.3 cm. The conducting shell has a linear charge density λ = 0.56 μC/m3. 
An infinitely long solid cylindrical insulator of radius 13.0 cm has a non-uniform volume charge density...
An infinitely long solid cylindrical insulator of radius 13.0 cm has a non-uniform volume charge density of =4r3 where is in Cm3 when r is in meters. Calculate the magnitude of the electric field at a distance of 17.00 cm from the axis of the cylinder.
find the dimensions and volume of the right circular cylinder of maximum volume inscribed in a...
find the dimensions and volume of the right circular cylinder of maximum volume inscribed in a sphere with radius 50cm
An infinitely long solid insulating cylinder of radius a = 2.1cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 2.1 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ  = 27μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.9 cm, and outer radius c = 17.9 cm. The conducting shell has a linear charge density λ = -0.36μC/m.1 What is Ey(R), the y-component of the electric field at point...
An infinitely long solid insulating cylinder of radius a = 2.1cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 2.1 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ  = 27μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.9 cm, and outer radius c = 17.9 cm. The conducting shell has a linear charge density λ = -0.36μC/m.1 What is Ey(R), the y-component of the electric field at point...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 25 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.5 cm, and outer radius c = 17.5 cm. The conducting shell has a linear charge density λ = -0.41μC/m. 1. What is V(P) – V(R), the potential difference between...
An infinitely long solid insulating cylinder of radius a = 4.4 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 4.4 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density p = 29 uC/m^3. Concentric with the cylinder is cylindrical conduction shell of inner radius b = 10.2cm and outer radius c= 12.2 cm. The conducting shell has a linear charge density = -0.33 uC/m. 1. What is Ey (R), the y-component of the electric field at point...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT