Question

In: Physics

An infinitely long solid insulating cylinder of radius a = 2.1cm is positioned with its...


An infinitely long solid insulating cylinder of radius a = 2.1 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ  = 27μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.9 cm, and outer radius c = 17.9 cm. The conducting shell has a linear charge density λ = -0.36μC/m.


1 What is Ey(R), the y-component of the electric field at point R, located a distance d = 46 cm from the origin along the y-axis as shown?

2 What is V(P) - V(R), the potential difference between points P and R? Point P is located at (x,y) = (46 cm, 46 cm).

3 What is V(c) - V(a), the potentital difference between the outer surface of the conductor and the outer surface of the insulator?

4 Defining the zero of potential to be along the z-axis (x = y = 0), what is the sign of the potential at the surface of the insulator?

5 The charge density of the insulating cylinder is now changed to a new value,ρ’ and it is found that the electric field at point P is now zero. What is the value of ρ’?

Solutions

Expert Solution


Related Solutions

An infinitely long solid insulating cylinder of radius a = 2.1cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 2.1 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ  = 27μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.9 cm, and outer radius c = 17.9 cm. The conducting shell has a linear charge density λ = -0.36μC/m.1 What is Ey(R), the y-component of the electric field at point...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 25 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.5 cm, and outer radius c = 17.5 cm. The conducting shell has a linear charge density λ = -0.41μC/m. 1. What is V(P) – V(R), the potential difference between...
An infinitely long solid insulating cylinder of radius a = 4.4 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 4.4 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density p = 29 uC/m^3. Concentric with the cylinder is cylindrical conduction shell of inner radius b = 10.2cm and outer radius c= 12.2 cm. The conducting shell has a linear charge density = -0.33 uC/m. 1. What is Ey (R), the y-component of the electric field at point...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 45 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 17.9 cm, and outer radius c = 19.9 cm. The conducting shell has a linear charge density λ = -0.31μC/m. 1) What is Ey(R), the y-component of the electric field...
​An infinitely long solid insulating cylinder of radius a = 2.2 cm
An infinitely long solid insulating cylinder of radius a = 2.2 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 48 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 18.3 cm, and outer radius C =20.3 cm. The conducting shell has a linear charge density λ = 0.56 μC/m3. 
An infinitely long, uniformly charged, insulating, solid cylinder, with radius R has spher- ical holes cut...
An infinitely long, uniformly charged, insulating, solid cylinder, with radius R has spher- ical holes cut into it of radius a < R along its axis. The cylinder is placed with its axis along the z − axis. These holes have centers at z = 0, ±d, ±2d, . . . ± nd with d > 2a and n run- ning to ∞. Calculate the electric field from the cylinder at a distance r > R on the x, y...
An infinitely long, solid non-conducting rod (cylinder) with circular cross section of radius a has its...
An infinitely long, solid non-conducting rod (cylinder) with circular cross section of radius a has its axis along the z-axis. It has a non-uniform volume charge density given in cylindrical coordinates by ρ(s) = C (s/a)^2 ,where C is a positive constant. In addition, there is a uniform volume charge density −σ on the outer cylindrical shell of radius b, where σ is a positive constant. Region 2 is a vacuum. For parts (a) through (c), use Gauss’ Law and...
A long, solid, insulating cylinder of radius R = 6 cm has a uniform charge density...
A long, solid, insulating cylinder of radius R = 6 cm has a uniform charge density of λ = −3 C/m. Find the electric field magnitude everywhere.
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
An infinitely long right circular cylinder has radius ?. There is a non-constant cylindrically symmetric volume...
An infinitely long right circular cylinder has radius ?. There is a non-constant cylindrically symmetric volume charge density ?(?), where ? is the (radial) distance from the axis of the cylinder, given by ?(?) = ((?0*?)/?)sin((2??)/?), where ?0 is a constant. 1. Consider a concentric cylinder with radius ? and length ?. Compute the total charge ?(?) inside the cylinder for 0 < ? < ? and for ? > ?. 2. Go back to the infinite cylinder setup and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT