In: Math
Determine \( f:R->R \) twice differentiable such that for function \( \varphi \) defined by
\( \varphi(x,y)=f(\frac{x}{y}) \) satisfies \( \frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2}=0 \)
solution
Let \( u=\frac{x}{y}=> \varphi(x,y)=f(u) \)
\( (*)\frac{ \partial\varphi }{\partial x}(x,y)=f'(u)u_x=\frac{1}{y}f'(u) \)
\( (**)\frac{\partial^2\varphi}{\partial x^2}(x,y)=\frac{1}{y^2}f''(u) \)
Then , \( \frac{\partial ^2\varphi}{\partial x^2}+\frac{\partial ^2\varphi}{\partial y^2}=\frac{1}{y^2}f''(u)+\frac{2x}{y^3}f'(u)+\frac{x^2}{y^4}f''(u)=0 \)
\( <=>\frac{1}{y^2}[(1+\frac{x^2}{y^2})f''(u)+2\frac{x}{y}f'(u)]=0 \)
\( <=>(1+\frac{x^2}{y^2})f''(u)+2\frac{x}{y}f'(u)=0 \)
\( <=>(1+u^2)f''(u)+2uf'(u)=0 \)
\( <=>[(1+u^2)f'(u)]'=0 \)
\( <=>(1+u^2)f'(u)=k,k\in R \)
\( <=>\int f'(u) du=k\int \frac{1}{1+u^2}du \)
\( <=>f(u)=karctan(u)+c, \) \( k,c\in R \)
Therefore, \( \varphi(x,y)=f(\frac{x}{y}) =karctan(u)+c, \) \( k,c\in R \)
answer
Therfore , \( \varphi(x,y)=f(\frac{x}{y}) =karctan(u)+c, \) \( k,c\in R \)