solution
Let u=yx=>φ(x,y)=f(u)
(∗)∂x∂φ(x,y)=f′(u)ux=y1f′(u)
(∗∗)∂x2∂2φ(x,y)=y21f′′(u)
Then , ∂x2∂2φ+∂y2∂2φ=y21f′′(u)+y32xf′(u)+y4x2f′′(u)=0
<=>y21[(1+y2x2)f′′(u)+2yxf′(u)]=0
<=>(1+y2x2)f′′(u)+2yxf′(u)=0
<=>(1+u2)f′′(u)+2uf′(u)=0
<=>[(1+u2)f′(u)]′=0
<=>(1+u2)f′(u)=k,k∈R
<=>∫f′(u)du=k∫1+u21du
<=>f(u)=karctan(u)+c, k,c∈R
Therefore, φ(x,y)=f(yx)=karctan(u)+c, k,c∈R
answer
Therfore , φ(x,y)=f(yx)=karctan(u)+c, k,c∈R