Solution
(a). Show that for all x,y>0:▽f(x,y)=(x+yπ,x+yπ)
∂x∂f=∫02πx2sin2t+y2cos2t2xsin2tdt ; ∂y∂f=∫02πx2sin2t+y2cos2t2ycos2tdt
x∂x∂f+y∂x∂f=∫02π2dt=π (1) and y∂x∂f+x∂x∂f=2xy∫02πx2sin2t+y2cos2t1dt=2xy∫02πy2+x2tan2t1/cos2tdt
u=tant=>du=cos2t1dt , then
t=0=>u−>0,t=2π=>u−>∞
y∂x∂f+x∂x∂f=2xy∫0∞y2+x2u21du=x2y∫0∞(xy)2+u21du
=x2yxy1arctan(xyu)∣∣∣∣0∞
=π (2)
from(1)&(2) : \( \begin{cases}
xf_x +yf_y =\pi \times x & \quad \\
yf_x +xf_y =\pi \times(-y) & \quad \
\end{cases} \)=>(x2−y2)fx=π(x−y)
so, =>fx=x2−y2π(x−y)=x+yπ
similarly, fy=x+yπ
Therefore, ▽f(x,y)=(x+yπ,x+yπ)
(b). Deduce that for all x,y>0:f(x,y)=πln(2x+y)
we have \( \begin{cases}
\frac{\partial f}{\partial x}(x,y) = \frac{\pi}{x+y} ,(1)& \quad \\
\frac{\partial f}{\partial y}(x,y) = \frac{\pi}{x+y} ,(2) & \quad \
\end{cases} \)
(1) : ∫∂x∂f(x,y)dx=∫x+yπdx
=>f(x,y)=πln(x+y)+c(y)
=>∂y∂f(x,y)=x+yπ+c′(y) , (3)
from(2&(3) : x+yπ=x+yπ+c′(y)=>c(y)=k∈R
Thus, f(x,y)=πln(x+y)+k
we take (x=1,y=1) =>f(1,1)=πln2+k
we have f(1,1)=0,Then,πln2+k=0=>k=−πln2
Therefore, f(x,y)=πln(x+y)−πln2=πln(2x+y)
Solution
(a). Show that for all x,y>0:▽f(x,y)=(x+yπ,x+yπ)
Therefore, ▽f(x,y)=(x+yπ,x+yπ)
(b). Deduce that for all x,y>0:f(x,y)=πln(2x+y)
Therefore, f(x,y)=πln(x+y)−πln2=πln(2x+y)