Question

In: Math

Function of Several Variables

Let \( f:R_+^* ×R_+^* \) \( -> R \) be a function defined by

\( f(x,y)=∫_0^\frac{\pi}{2} ln⁡(x^2 sin^2⁡t+y^2 cos^2⁡t)dt \) 

(a). Show that for all \( x,y >0 : \bigtriangledown f(x,y)= (\frac{\pi}{x+y},\frac{\pi}{x+y}) \)

(b). Deduce that for all \( x,y>0 : f(x,y)=\pi ln(\frac{x+y}{2}) \)

Solutions

Expert Solution

Solution

(a). Show that for all \( x,y >0 : \bigtriangledown f(x,y)= (\frac{\pi}{x+y},\frac{\pi}{x+y}) \)

 \( \frac{\partial f}{\partial x} =\int_0^\frac{\pi}{2} \frac{2xsin^2t}{x^2sin^2t+y^2cos^2t} dt \) ; \( \frac{\partial f}{\partial y} =\int_0^\frac{\pi}{2} \frac{2ycos^2t}{x^2sin^2t+y^2cos^2t} dt \)

\( x \frac{\partial f}{\partial x}+y\frac{\partial f}{\partial x}= \int_0^\frac{\pi}{2} 2dt=\pi \)  (1) and \( y \frac{\partial f}{\partial x}+x\frac{\partial f}{\partial x}=2xy \int_0^\frac{\pi}{2} \frac{1}{x^2sin^2t+y^2cos^2t}dt =2xy \int_0^\frac{\pi}{2} \frac{1/cos^2t}{y^2+x^2tan^2t}dt \)

\( u=tant => du=\frac{1}{cos^2t}dt \) , then

\( t=0=>u->0 , t=\frac{\pi}{2} =>u-> \infty \)

\( y \frac{\partial f}{\partial x}+x\frac{\partial f}{\partial x}=2xy \int_0^\infty \frac{1}{y^2+x^2u^2}du =\frac{2y}{x}\int_0^\infty\frac{1}{(\frac{y}{x})^2 +u^2}du \)

                     \( =\frac{2y}{x} \frac{1}{\frac{y}{x}}arctan\left.(\frac{u}{\frac{y}{x}})\right |_0^ \infty \)

                     \( =\pi \)   (2)

from(1)&(2) : \( \begin{cases} xf_x +yf_y =\pi \times x & \quad \\ yf_x +xf_y =\pi \times(-y) & \quad \ \end{cases} \)\( => (x^2-y^2)f_x=\pi(x-y) \)

so, \( =>f_x= \frac{\pi(x-y)}{x^2-y^2}=\frac{\pi}{x+y} \) 

similarly, \( f_y =\frac{\pi}{x+y} \)

Therefore, \( \bigtriangledown f(x,y)= (\frac{\pi}{x+y},\frac{\pi}{x+y}) \)

(b). Deduce that for all \( x,y>0 : f(x,y)=\pi ln(\frac{x+y}{2}) \)

we have \( \begin{cases} \frac{\partial f}{\partial x}(x,y) = \frac{\pi}{x+y} ,(1)& \quad \\ \frac{\partial f}{\partial y}(x,y) = \frac{\pi}{x+y} ,(2) & \quad \ \end{cases} \)

(1) : \( \int\frac{\partial f}{\partial x}(x,y)dx = \int\frac{\pi}{x+y} dx \)

\( =>f(x,y)=\pi ln(x+y)+c(y) \)

\( =>\frac{\partial f}{\partial y}(x,y)=\frac{\pi}{x+y}+c'(y) \) , (3) 

from(2&(3) : \( \frac{\pi}{x+y}=\frac{\pi}{x+y}+c'(y) =>c(y)=k\in R \)

Thus, \( f(x,y)=\pi ln(x+y)+k \)

we take \( (x=1,y=1) \) \( =>f(1,1)=\pi ln2+k \)

we have \( f(1,1)=0, Then , \pi ln2+k=0=>k=-\pi ln2 \)

Therefore, \( f(x,y)=\pi ln(x+y)-\pi ln2=\pi ln(\frac{x+y}{2}) \)


Solution

(a). Show that for all \( x,y >0 : \bigtriangledown f(x,y)= (\frac{\pi}{x+y},\frac{\pi}{x+y}) \)

Therefore, \( \bigtriangledown f(x,y)= (\frac{\pi}{x+y},\frac{\pi}{x+y}) \)

(b). Deduce that for all \( x,y>0 : f(x,y)=\pi ln(\frac{x+y}{2}) \)

Therefore, \( f(x,y)=\pi ln(x+y)-\pi ln2=\pi ln(\frac{x+y}{2}) \)

 

Related Solutions

Function of Several Variables
Compute the directional derivative aong, \( u \) , at the indicated points . (a). \( f(x,y)=x\sqrt{y-3} \)  \( ,u=(-1,6) \)  \( a=(2,12) \) (b). \( f(x,y,z)=\frac{1}{x+2y-3z} \) , \( u=(12,-9,-4) \) \( a=(1,1,-1) \)
Function of Several Variables
Determine \( f:R->R \) twice differentiable such that for function  \( \varphi \) defined by  \( \varphi(x,y)=f(\frac{x}{y}) \) satisfies \( \frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2}=0 \)
Function of Several Variables
Determine the function \( f : R^2->R \) satisies \( \frac{\partial f}{\partial x}(x,y)=2xy \)  and \( \frac{\partial f}{\partial y}(x,y)=x^2+2y \)
give an example of a function of several variables, but without using a mathematical formula. Can...
give an example of a function of several variables, but without using a mathematical formula. Can you think of a real life example of something which depends on two, three, or more things? Dont use textbook examples. This is more of a concept type of question. Please write in complete sentences
Function of Several Veriables
Let \( f,g :R-> R \) be to functions defined by \( f(x)=(\int_0^\infty \mathrm{e}^{-t^2}\,\mathrm{d}t)^2 \) and \( g(x)= \int_0^1\frac{e^\frac{-x^2(1+t^2)}{1}}{1+t^2}dt \) (a).Show that for all \( x\in R : \)  \( f(x)+g(x)=\frac{\pi}{4} \) (b). Deduce that     \( \int_0^\infty \mathrm{e}^{-t^2}\,\mathrm{d}t=\frac{\sqrt{\pi}{}}{2} \)  
If ? ? ? are random variables density function ? (?, ?) = ??^-? (?+?), ?...
If ? ? ? are random variables density function ? (?, ?) = ??^-? (?+?), ? <? < ∞, ? <? <∞, find a) the cumulative joint distribution of ?=?+? b) the joint distribution of ? = ?/? ? ? = ? c) the marginal distribution of U
Define what categorical and continuous variables are and provide several examples of each.
Define what categorical and continuous variables are and provide several examples of each.
A function of two variables being continuous means Select all that apply The function is built...
A function of two variables being continuous means Select all that apply The function is built from elementary functions and algebraic operations. We can evaluate limits of the function by simply plugging in values. Its graph can be drawn without lifting up the pencil The function's value at each point of the domain is equal to its limit there. All the partial derivatives exist.
A _______________ is defined as the set of local variables in a function that are kept alive after the function has returned.
Fill in the blanks in each of the following.A _______________ is defined as the set of local variables in a function that are kept alive after the function has returned.All JavaScript objects inherit the properties and functions (or also called methods) from their _______________ that is created using an object constructor function.The _______________ operator removes a given property from an object. (Note that the operator is a keyword, not a symbol.)A ____________________ is a web app that interacts with the...
Write out the production function. What do each of the variables in the function represent? (i.e....
Write out the production function. What do each of the variables in the function represent? (i.e. factors that determine productive capability) Which of these factors are key to long term sustainable growth?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT