Question

In: Chemistry

2. Look up a coffee-cup calorimeter in your textbook and describe the components of the apparatus....

2. Look up a coffee-cup calorimeter in your textbook and describe the components of the apparatus. (2 points) Assuming that the calorimeter prevents any heat to be taken in or released, the amount of heat transferred between the system and the surroundings should be equal in value but opposite in sign. For example, if a hot piece of metal gives off 5 J of energy, than the surrounding water should take in 5 J of energy. (Remember exothermic processes have a “-“q while endothermic process have a “+” q).

qsystem = - qsurroundings

With that being said, the transfer of heat during a chemical reaction can be concluded as

qsystem (aka the reaction) = - qsurroundings (aka the solution)

and since we know that…

q = C x m x DT

we can conclude that…

crxn x mrxn x DTrxn= - (csoln x msoln x DTsoln)

(note that the “-“ sign is just to show that they are equal but opposite. The actual value of the rxn and solution depend on the reaction that took place)

Solutions

Expert Solution

Consider mixture of reactants in aqueous solution is placed in coffee cup. As the reaction occurs it releases energy which is transferred to the calorimeter. That is, heat released by reaction will be absorbed by calorimeter and there will be temperature rise in the calorimeter.

             qrxn = -(qcal) = -Ccal(change in temperature)

The reactant solutions if undergo neutralization form water, so if the heat absorbed by calorimeter and other products (excluding water) is ignored. The solution density and heat capacity can be taken just of water.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

calorimeter.

  qrxn = -(qcal + qwater)

1) If the temperature of calorimeter (and its contents) increases, the calorimeter (and its contents) should absorb energy. And this energy is released by the reaction. Thus, the sign of qcal, qcontents is positive and the sign of qrxn is negative.

2) If the temperature of calorimeter decreases, the calorimeter (and its contents) should release energy. And this energy is absorbed by the reaction. Thus, the sign of qcal is negative and the sign of qrxn is positive


Related Solutions

In the laboratory a"coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the...
In the laboratory a"coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. A student heats65.62grams ofzincto98.24 °C and then drops it into a cup containing75.87grams of water at23.87 °C. She measures the final temperature to be29.24 °C. The heat capacity of the calorimeter (sometimes referred to as thecalorimeter constant) was determined in a separate experiment to be1.54J/°C. Assuming that no heat...
In a coffee-cup calorimeter experiment, if we ignored the heat lost to the Styrofoam cup and...
In a coffee-cup calorimeter experiment, if we ignored the heat lost to the Styrofoam cup and the air, does this cause the heat gained by the total solution at the end to be too big or too small. Could you please explain.
In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of...
In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of a metal. She heats 18.3 grams of gold to 99.38°C and then drops it into a cup containing 80.2 grams of water at 20.87°C. She measures the final temperature to be 21.40°C. Assuming that all of the heat is transferred to the water, she calculates the specific heat of gold to be J/g°C.
A coffee cup calorimeter contains 480.0 g of water at 25.0 oC. To it are added:...
A coffee cup calorimeter contains 480.0 g of water at 25.0 oC. To it are added: 380.0 g of water at 53.5 oC 525.0 g of water at 65.5 oC Assuming the heat absorbed by the styrofoam is negligible, calculate the expected final temperature. The specific heat of water is 4.184 J g–1 K–1. Select one: a. 38.2 oC b. 48.2 oC c. 67.6 oC d. 88.7 oC
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 7.10 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units.
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 8.50 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units.
Part A In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used....
Part A In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 4.00 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units. Hints
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 4.90 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol.
A coffee-cup (constant pressure) calorimeter is used to carry out the following reaction in an unknown...
A coffee-cup (constant pressure) calorimeter is used to carry out the following reaction in an unknown volume of water (where X is a hypothetical metal): X + 2 H2O → X(OH)2 + H2 In this process, the water temperature rose from 25.0 °C to 32.2 °C. If 0.00803 mol of "X" was consumed during the reaction, and the ΔH of this reaction with respect to the system is -1798 kJ mol-1 , what volume of water (in mL) was present...
When 28 g of calcium chloride was dissolved in 100g water in a coffee-cup calorimeter, the...
When 28 g of calcium chloride was dissolved in 100g water in a coffee-cup calorimeter, the temperature rose from 25* Celcius to 41.3. What is the enthalpy change for this process? Assume the solution is equal to the specific heat of water.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT