Question

In: Physics

In a coffee-cup calorimeter experiment, if we ignored the heat lost to the Styrofoam cup and...

In a coffee-cup calorimeter experiment, if we ignored the heat lost to the Styrofoam cup and the air, does this cause the heat gained by the total solution at the end to be too big or too small. Could you please explain.

Solutions

Expert Solution

A cofee cup calorimeter is used to measure the specific heat of an unknown material.

For this, the material is heated to a high temperature and is dipped in a known mass of water in a styrofoam cup.

Assuming that the heat is completely transferred to the cup, the heat gained by the solution is given by

Where c is the specific heat of water

and is the change in temperature measured using a thermometer.

Now, there is heat loss to the material of the cup and the air.

This loss is not measured.

Due to the heat loss, the change in temperature of the water is less, and the measured heat Q will be less.

So, the measurred value of heat gained by the total solution at the end will be smaller than the actual value.

But htis will be a very small value, since water ahs a very high specific heat capacity compared to any other material, and absorbs heat very easily.

Even though the measured value is small, this is not too small to cause experimental errors.


Related Solutions

In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of...
In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of a metal. She heats 18.3 grams of gold to 99.38°C and then drops it into a cup containing 80.2 grams of water at 20.87°C. She measures the final temperature to be 21.40°C. Assuming that all of the heat is transferred to the water, she calculates the specific heat of gold to be J/g°C.
In a lab, using a styrofoam cup as a calorimeter is an experimental limitation. Why? how...
In a lab, using a styrofoam cup as a calorimeter is an experimental limitation. Why? how could this be fixed?
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 7.10 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units.
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 8.50 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units.
Part A In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used....
Part A In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 4.00 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units. Hints
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 4.90 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol.
In a styrofoam cup calorimeter, a 55ml sample of .6M HI at 18.46 degrees celsius is...
In a styrofoam cup calorimeter, a 55ml sample of .6M HI at 18.46 degrees celsius is allowed to mix with 86 ml of KOH at the same temperature. The final temperature of the reactoin mixture reached 21.96 degrees celsius. Calculate ∆H per mole of limiting reagent for this reaction. (Assume the density of the solution is 1 g/ml and the Csp of water is 4.184 J/g)
40.0 gram of ice at −15.00 °C is put into a Styrofoam cup calorimeter (of negligible...
40.0 gram of ice at −15.00 °C is put into a Styrofoam cup calorimeter (of negligible mass) containing water at +15.00 °C. When equilibrium is reached, the final temperature is 6.00 °C. How much water did the calorimeter contain initially? The specific heat of ice is 2090J/(kg • K), that of water is 4186 J/(kg • K), and the latent heat of fusion of water is 33.5 × 104J/kg. A)416 g B)579 g C)425 g D)613 g E)780 g
In the laboratory a"coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the...
In the laboratory a"coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. A student heats65.62grams ofzincto98.24 °C and then drops it into a cup containing75.87grams of water at23.87 °C. She measures the final temperature to be29.24 °C. The heat capacity of the calorimeter (sometimes referred to as thecalorimeter constant) was determined in a separate experiment to be1.54J/°C. Assuming that no heat...
Info for part 1: Determining the heat capacity of the calorimeter Mass of the empty Styrofoam...
Info for part 1: Determining the heat capacity of the calorimeter Mass of the empty Styrofoam cups and cover: 30.21 g Mass of the cups, cover and 70 ml cool water: 95.21 g Mass of the cups, cover, 70 ml water and 30 ml hot water: 127.41 g Initial temperature of the hot water (boiling bath): 99.5 C Initial temperature of the cool water in the cups: 18 C Final temperature of the calorimeter and the added hot water: 43...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT