Question

In: Physics

An uncharged nonconductive hollow sphere of radius 11.0 cm surrounds a 12.0 µC charge located at...

An uncharged nonconductive hollow sphere of radius 11.0 cm surrounds a 12.0 µC charge located at the origin of a cartesian coordinate system. A drill with a radius of 1.00 mm is aligned along the zaxis, and a hole is drilled in the sphere. Calculate the electric flux through the hole.

Solutions

Expert Solution


Related Solutions

An initially uncharged hollow metallic sphere with radius of 5 cm has a small object with...
An initially uncharged hollow metallic sphere with radius of 5 cm has a small object with a charge of +10 mC carefully placed at the center of the sphere through a hole in the latter's surface. With the charge in place, what charge is now present on the outside surface of the sphere? I know the answer 10uC, but do not understand how to get there. Please show work.
Metal sphere A of radius 11.0 cm carries 9.00 μC of charge, and metal sphere B...
Metal sphere A of radius 11.0 cm carries 9.00 μC of charge, and metal sphere B of radius 20.0 cm carries −2.00 μC of charge. If the two spheres are attached by a very long conducting thread, what is the final distribution of charge on the two spheres? Charge on sphere A (μC)? Charge on sphere B (μC)?
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC distributed uniformly on its surface. (a) Find the electric field 10.0 cm from the center of the charge distribution. magnitude MN/C direction ---Select--- radially inward radially outward the electric field is zero (b) Find the electric field 22.0 cm from the center of the charge distribution. magnitude MN/C direction
A solid conducting sphere of radius 1.00 cm has a uniform charge of -5.00 µC. It...
A solid conducting sphere of radius 1.00 cm has a uniform charge of -5.00 µC. It is surrounded by a concentric spherical shell, with a radius of 2.50 cm, that has a uniform charge of +6.00 µC. Determine the magnitude and direction of the electric field (a) at the center of the sphere (r = 0), (b) at r = 0.500 cm, (c) at r = 2.00 cm, and (d) at r = 3.00 cm.
Consider a hollow, infinite sphere of radius R. the hollow space is free of charge, but...
Consider a hollow, infinite sphere of radius R. the hollow space is free of charge, but a surface charge sigma = sigma not cos theta exists on the inside surface of the conductor at s =R. Can this sphere be a conductor? ( I.e, can you induce this charge on a conducting surface somehow)
1. We have a hollow metallic sphere with charge -5.0 uC and radius 5.0 cm. We...
1. We have a hollow metallic sphere with charge -5.0 uC and radius 5.0 cm. We insert a +10uC charge at the center of the sphere through a hole in the surface. What charge now rests on the outer surface of the sphere? +5 uC +10 uC +15 uC -5 uC A free electron is in an electric field. With respect to the field, it experiences a force acting: Parallel Anti-parallel Perpendicular Along a constant potential line A parallel plate...
If a charge "Q" is removed from the inside surface of a hollow sphere of radius...
If a charge "Q" is removed from the inside surface of a hollow sphere of radius "a" with infinite conductivity. (a)How much force is required to remove the charge from the sphere? (b)How much work is done to move the charge to a radius of infinity?
A hollow, thin-walled sphere of mass 11.0 kg and diameter 48.0 cm is rotating about an...
A hollow, thin-walled sphere of mass 11.0 kg and diameter 48.0 cm is rotating about an axle through its center. The angle (in radians) through which it turns as a function of time (in seconds) is given by θ(t)=At2+Bt4, where A has numerical value 1.20 and Bhas numerical value 1.60. At the time 3.00 s , find the angular momentum of the sphere. At the time 3.00 s , find the net torque on the sphere.
1. A point charge of 4 µC is located at x = -3.0 cm, and a...
1. A point charge of 4 µC is located at x = -3.0 cm, and a second point charge of -5 µC is located at x = +4.0 cm. Where should a third charge of +6.0 µC be placed so that the electric field at x = 0 is zero? 2. An electron is released from rest in a weak electric field given by -1.7 x 10-10 N/C . After the electron has traveled a vertical distance of 1.3 µm,...
A spherical conductor has a radius of 14.0 cm and a charge of 32.0 µC. Calculate...
A spherical conductor has a radius of 14.0 cm and a charge of 32.0 µC. Calculate the electric field and the electric potential at the following distances from the center. a) r =8.0 cm electric field: MN/C electric potential: MV b) r = 36.0 cm electric field: MN/C electric potential: MV c) r = 14.0 cm electric field: MN/C electric potential: MV
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT