Question

In: Physics

A spherical conductor has a radius of 14.0 cm and a charge of 26.0 µC. Calculate...

A spherical conductor has a radius of 14.0 cm and a charge of 26.0 µC.

Calculate the electric field and the electric potential at:

(a) r = 10.0 cm,

(b) r = 20.0 cm,

(c) r = 14.0 cm from the center.

Solutions

Expert Solution

For a spherical conductor, the electric field inside the conductor is zero. And the electric potential inside the sphere is equal to the electric potential at the surface of the conductor. At for a point outside the sphere, the electric field and electric potential is given by that of a point charge at the center of the sphere.
So, for the sphere of radius R = 14.0 cm, and charge Q = 26.0 microcoulombs,
a)
  At r = 10.0 cm < 14.0 cm,
   the electric field is zero.
The electric potential is given by
  

  

b)
  At r = 20.0 cm > 14.0 cm,
   the electric field is




The electric potential is given by
  

  

c)
  
  At r = 14.0 cm = R
   the electric field is



The electric potential is given by
  

  


Related Solutions

A spherical conductor has a radius of 14.0 cm and a charge of 32.0 µC. Calculate...
A spherical conductor has a radius of 14.0 cm and a charge of 32.0 µC. Calculate the electric field and the electric potential at the following distances from the center. a) r =8.0 cm electric field: MN/C electric potential: MV b) r = 36.0 cm electric field: MN/C electric potential: MV c) r = 14.0 cm electric field: MN/C electric potential: MV
A spherical conductor has a radius of 14 cm and a charge of 26 micro columns....
A spherical conductor has a radius of 14 cm and a charge of 26 micro columns. Calculate the electric field (vector) and the electrical potential at a). R=10 cm from center b). R= 20 cm fromcenter c). R=14 cm center Please show all of your work!
A spherical conductor carries a charge −30 μC and has a radius of 20 cm. a)...
A spherical conductor carries a charge −30 μC and has a radius of 20 cm. a) Determine the electric field and potential at all points in space. b) Calculate the values of the field and potential at the following points: i) r = 20 cm, ii) r = 15 cm, iii) r = 40 cm.
Charge is added to a spherical conductor of radius 20.0 cm. (a) If the maximum electrical...
Charge is added to a spherical conductor of radius 20.0 cm. (a) If the maximum electrical field the air surrounding the sphere can sustain without the molecules being ionized is 3.00 × 106 V/m, what is the maximum charge that can be placed on the sphere? Let the charge placed on the sphere be 5.00 μC. (b) What is the potential at the surface of the sphere? (c) What is the potential at a point located 10.0 cm from the...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC distributed uniformly on its surface. (a) Find the electric field 10.0 cm from the center of the charge distribution. magnitude MN/C direction ---Select--- radially inward radially outward the electric field is zero (b) Find the electric field 22.0 cm from the center of the charge distribution. magnitude MN/C direction
A solid conducting sphere of radius 1.00 cm has a uniform charge of -5.00 µC. It...
A solid conducting sphere of radius 1.00 cm has a uniform charge of -5.00 µC. It is surrounded by a concentric spherical shell, with a radius of 2.50 cm, that has a uniform charge of +6.00 µC. Determine the magnitude and direction of the electric field (a) at the center of the sphere (r = 0), (b) at r = 0.500 cm, (c) at r = 2.00 cm, and (d) at r = 3.00 cm.
A disk of radius 2.6 cm has a surface charge density of 6.0 µC/m2 on its...
A disk of radius 2.6 cm has a surface charge density of 6.0 µC/m2 on its upper face. What is the magnitude of the electric field produced by the disk at a point on its central axis at distance z = 18 cm from the disk?
A charge of 2.20 µC is uniformly distributed on a ring of radius 9.0 cm. Find...
A charge of 2.20 µC is uniformly distributed on a ring of radius 9.0 cm. Find the electric field strength on the axis at the following locations. (a) 1.2 cm from the center of the ring N/C (b) 3.9 cm from the center of the ring N/C (c) 4.0 m from the center of the ring N/C (d) Find the field strength at 4.0 m using the approximation that the ring is a point charge at the origin. N/C (e)...
A charge of 2.20 µC is uniformly distributed on a ring of radius 9.0 cm. Find...
A charge of 2.20 µC is uniformly distributed on a ring of radius 9.0 cm. Find the electric field strength on the axis at the following locations. (be careful calculating c and d the last post was wrong. please include e.) (a) 1.2 cm from the center of the ring   N/C (b) 3.9 cm from the center of the ring   N/C (c) 4.0 m from the center of the ring   N/C (d) Find the field strength at 4.0 m using...
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa =...
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa = 8.00×10-6C. Concentric with it is a thin-walled metal spherical shell of radius b = 5.20 cm and charge qb = 2.50×10-6 C. Find the electric field at distance r = 0 cm from the common center. Tries 0/10 Find the electric field at distance r = 3.70 cm from the common center. Tries 0/10 Find the electric field at distance r = 8.90 cm...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT