In: Statistics and Probability
Let x be a random variable that represents the percentage of successful free throws a professional basketball player makes in a season. Let y be a random variable that represents the percentage of successful field goals a professional basketball player makes in a season. A random sample of n = 6 professional basketball players gave the following information.
| x | 67 | 64 | 75 | 86 | 73 | 73 | 
| y | 44 | 39 | 48 | 51 | 44 | 51 | 
(a) Find Σx, Σy, Σx2, Σy2, Σxy, and r. (Round r to three decimal places.)
| Σx = | |
| Σy = | |
| Σx2 = | |
| Σy2 = | |
| Σxy = | |
| r = | 
(b) Use a 5% level of significance to test the claim that
ρ > 0. (Round your answers to two decimal places.)
| t = | |
| critical t = | 
Conclusion
Reject the null hypothesis, there is sufficient evidence that ρ > 0.Reject the null hypothesis, there is insufficient evidence that ρ > 0. Fail to reject the null hypothesis, there is insufficient evidence that ρ > 0.Fail to reject the null hypothesis, there is sufficient evidence that ρ > 0.
(c) Find Se, a, b, and
x. (Round your answers to four decimal places.)
| Se = | |
| a = | |
| b = | |
| x = | 
(d) Find the predicted percentage ŷ of successful field
goals for a player with x = 80% successful free throws.
(Round your answer to two decimal places.)
%
(e) Find a 90% confidence interval for y when x =
80. (Round your answers to one decimal place.)
| lower limit | % | 
| upper limit | % | 
(f) Use a 5% level of significance to test the claim that
β > 0. (Round your answers to two decimal places.)
| t = | |
| critical t = | 
Conclusion
Reject the null hypothesis, there is sufficient evidence that β > 0.Reject the null hypothesis, there is insufficient evidence that β > 0. Fail to reject the null hypothesis, there is insufficient evidence that β > 0.Fail to reject the null hypothesis, there is sufficient evidence that β > 0.
a)
| X | Y | XY | X² | Y² | |
| total sum | 438 | 277 | 20365 | 32264 | 12899 | 
correlation coefficient ,    r = Sxy/√(Sx.Sy)
=   0.803
      
b)
Ho:   ρ = 0  
Ha:   ρ > 0  
n=   6  
alpha,α =    0.05  
correlation , r=   0.8032  
t-test statistic = r*√(n-2)/√(1-r²) =   
    2.697
DF=n-2 =   4  
critical t-value =    2.132
Reject the null hypothesis, there is sufficient evidence that ρ > 0.
c)
sample size ,   n =   6  
       
here, x̅ =Σx/n =   73.000   ,   ȳ =
Σy/n =   46.167  
          
       
SSxx =    Σx² - (Σx)²/n =   290.00  
       
SSxy=   Σxy - (Σx*Σy)/n =   144.00  
       
SSyy =    Σy²-(Σy)²/n =   110.83  
       
estimated slope , ß1 = SSxy/SSxx =   144.000  
/   290.000   =   0.49655
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
9.91839          
          
       
so, regression line is   Ŷ =  
9.91839   +   0.49655   *x
          
       
SSE=   (Sx*Sy - S²xy)/Sx =   
39.3299          
          
       
std error ,Se =    √(SSE/(n-2)) =   
3.1357         
a=9.9184
b= 0.4966
d)
Predicted Y at X=   80   is  
           
   
Ŷ =   9.918   +   0.497  
*   80   =   49.64
e)
X Value=   80      
           
   
Confidence Level=   90%      
           
   
          
           
   
          
           
   
Sample Size , n=   6      
           
   
Degrees of Freedom,df=n-2 =   4  
           
       
critical t Value=tα/2 =   2.132   [excel
function: =t.inv.2t(α/2,df) ]      
           
          
           
   
X̅ =    73.00      
           
   
Σ(x-x̅)² =Sxx   290.000000      
           
   
Standard Error of the Estimate,Se=   3.14  
           
       
          
           
   
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =   
1.817          
           
margin of error,E=t*Std error=t* S(ŷ) =  
2.1318   *   1.8166   =  
3.8727      
          
           
   
Confidence Lower Limit=Ŷ +E =   
49.643   -   3.8727   =  
45.8   
Confidence Upper Limit=Ŷ +E =   49.643  
+   3.8727   =   53.5
f)
t stat = estimated slope/std error =ß1 /Se(ß1) =
   0.4966   /   0.1841  
=   2.697
          
       
t-critical value=    2.132
Reject the null hypothesis, there is sufficient evidence that
β > 0