Question

In: Advanced Math

Let G, H be groups and define the relation ∼= where G ∼= H if there...

Let G, H be groups and define the relation ∼= where G ∼= H if there is an isomorphism ϕ : G → H.

(i) Show that the relation ∼= is an equivalence relation on the set of all groups.

(ii) Give an example of two different groups that are related.

Solutions

Expert Solution


If you need any further clarification regarding this problem feel free to comment below


Related Solutions

Let G and H be groups. Define the direct product G X H = {(x,y) |...
Let G and H be groups. Define the direct product G X H = {(x,y) | x ∈ G and y ∈H } Prove that G X H itself is a group.
Let G, H, K be groups. Prove that if G ≅ H and H ≅ K...
Let G, H, K be groups. Prove that if G ≅ H and H ≅ K then G ≅ K.
Direct product of groups: Let (G, ∗G) and (H, ∗H) be groups, with identity elements eG...
Direct product of groups: Let (G, ∗G) and (H, ∗H) be groups, with identity elements eG and eH, respectively. Let g be any element of G, and h any element of H. (a) Show that the set G × H has a natural group structure under the operation (∗G, ∗H). What is the identity element of G × H with this structure? What is the inverse of the element (g, h) ∈ G × H? (b) Show that the map...
Given a group G with a subgroup H, define a binary relation on G by a...
Given a group G with a subgroup H, define a binary relation on G by a ∼ b if and only if ba^(-1)∈ H. (a) (5 points) Prove that ∼ is an equivalence relation. (b) (5 points) For each a ∈ G denote by [a] the equivalence class of a and prove that [a] = Ha = {ha | h ∈ H}. A set of the form Ha, for some a ∈ G, is called a right coset of H...
Let H, K be groups and α : K → Aut(H) be a homomorphism of groups....
Let H, K be groups and α : K → Aut(H) be a homomorphism of groups. Show that H oα K is the internal semidirect product of subgroups which are isomorphic to H and K, respectively
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If b is an element of G as well and the intersection of aH bH is non-empty then aH and bH contain the same number of elements in G. Thus conclude that the number of elements in H, o(H), divides the number of elements...
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂...
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂ G be a subgroup of G such that K ⊂ H Suppose that H is also a normal subgroup of G. (a) Show that H/K ⊂ G/K is a normal subgroup. (b) Show that G/H is isomorphic to (G/K)/(H/K).
Let S = {1,2,3,4} and let A = SxS Define a relation R on A by...
Let S = {1,2,3,4} and let A = SxS Define a relation R on A by (a,b)R(c,d) iff ad = bc Write out each equivalence class (by "write out" I mean tell me explicitly which elements of A are in each equivalence class) Hint: |A| = 16 and there are 11 equivalence classes, so there are several equivalence classes that consist of a single element of A.
Let G be a group, and let a ∈ G be a fixed element. Define a...
Let G be a group, and let a ∈ G be a fixed element. Define a function Φ : G → G by Φ(x) = ax−1a−1. Prove that Φ is an isomorphism is and only if the group G is abelian.
Suppose G is a group and H and H are both subgroups of G. Let HK={hk,...
Suppose G is a group and H and H are both subgroups of G. Let HK={hk, h∈H and k ∈K} a.give a example such that |HK| not equal to |H| |K| b. give a example to show f :HK →H ⨯K given by f(hk) = (h,k) may not be well defined.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT