Question

In: Advanced Math

Consider a random variable Q with a uniform probability density function given as UQ(-1,1) and X=2Q^2+2...

Consider a random variable Q with a uniform probability density function given as UQ(-1,1) and X=2Q^2+2 a) Find and plot the probability density function (pdf) of X b) Find and plot the cumulative distribution function (cdf) of X c) Find expected value and variance of X (E[X] and V[X]) d) Find expected value and variance of Q (E[Q] and V[Q]) e) Find the correlation of Q and X

.

Solutions

Expert Solution

Thumbs Up


Related Solutions

2 Consider the probability density function (p.d.f) of a continuous random variable X: f(x) = (...
2 Consider the probability density function (p.d.f) of a continuous random variable X: f(x) = ( k x3 , 0 < x < 1, 0, elsewhere, where k is a constant. (a) Find k. (b) Compute the cumulative distribution function F(x) of X. (c) Evaluate P(0.1 < X < 0.8). (d) Compute µX = E(X) and σX.
The probability density function of the continuous random variable X is given by fX (x) =...
The probability density function of the continuous random variable X is given by fX (x) = kx, (0 <= x <2) = k (4-x), (2 <= x <4) = 0, (otherwise) 1) Find the value of k 2)Find the mean of m 3)Find the Dispersion σ² 4)Find the value of Cumulative distribution function FX(x)
The probability density function of the random variable X is given by fX(x) = ax +...
The probability density function of the random variable X is given by fX(x) = ax + 2/9 if 1/2 ≤ x ≤ 3, and 0 otherwise. (a) Compute the value of a. (b) Let the random variable Y be defined as Y = [X], where [·] is the “round down” operator (that is, for example, [2.5] = 2, [−2.5] = −3, [−3] = −3). Find the probability mass function of Y . (Hint: For Y to take value k, what...
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = x/C , 3 ≤ x ≤ 7, zero elsewhere. Consider Y = g( X ) = 100/(x^2+1). Use cdf approach to find the cdf of Y, FY(y). Hint: F Y ( y ) = P( Y <y ) = P( g( X ) <y ) =
1. Let X be a random variable with probability density function fX given by fX(x) =...
1. Let X be a random variable with probability density function fX given by fX(x) = γαγ/ (x + α)^γ+1 , x ≥ 0, 0, x < 0, where α > 0 and γ > 0. (a) Find the cumulative distribution function (cdf) FX of X. (b) Let Y = log(X+α /α) . Find the cdf of Y and identify the distribution. (c) How could a realisation of X be generated from an R(0,1) random number generator? (d) Let Z...
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e −x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
If the joint probability density function of the random variables X and Y is given by...
If the joint probability density function of the random variables X and Y is given by f(x, y) = (1/4)(x + 2y) for 0 < x < 2, 0 < y < 1, 0 elsewhere (a) Find the conditional density of Y given X = x, and use it to evaluate P (X + Y/2 ≥ 1 | X = 1/2) (b) Find the conditional mean and the conditional variance of Y given X = 1/2 (c) Find the variance...
[25 pts] The probability density function of a random variable X is fX(x) = ce^ -|x|...
[25 pts] The probability density function of a random variable X is fX(x) = ce^ -|x| for all values of x, where c is a constant. Find the value of c and the cumulative distribution function of X.
The (mixed) random variable X has probability density function (pdf) fX (x) given by: fx(x)=0.5δ(x−3)+ {...
The (mixed) random variable X has probability density function (pdf) fX (x) given by: fx(x)=0.5δ(x−3)+ { c.(4-x2), 0≤x≤2 0, otherwise where c is a constant. (a) Sketch fX (x) and find the constant c. (b) Find P (X > 1). (c) Suppose that somebody tells you {X > 1} occurred. Find the conditional pdf fX|{X>1}(x), the pdf of X given that {X > 1}. (d) Find FX(x), the cumulative distribution function of X. (e) Let Y = X2 . Find...
If a random variable X has a beta distribution, its probability density function is fX (x)...
If a random variable X has a beta distribution, its probability density function is fX (x) = 1 xα−1(1 − x)β−1 B(α,β) for x between 0 and 1 inclusive. The pdf is zero outside of [0,1]. The B() in the denominator is the beta function, given by beta(a,b) in R. Write your own version of dbeta() using the beta pdf formula given above. Call your function mydbeta(). Your function can be simpler than dbeta(): use only three arguments (x, shape1,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT