In: Chemistry
Please show work!!
On an atomic level, when the electron relaxes from a higher energy level (n=4) to a lower energy level, a photon with the wavelength of 485nm is released. Determine the lower energy level, to which the electron relaxes.
Solution:
Given: Energy level occupied by electron initially,ni = 4 Wavelength of photon released, = 485nm = 485X10-19m
Step 1: To calculate energy released by photon,E : We know that, E = h = hc/ Where, h = Planck's constant = 6.636X10-34 Js c = Speed of light = 3X108 m/s
E = (6.636X10-34 Js )(3X108 m/s)/(485X10-9m) E = 4.098X10-19J Now, since energy is being released during the transition from higher level to the lower level, therefore, E must be negative. Hence, E = - 4.098X10-19J Step 2: To calculate the lower energy level occupied by electron after relaxation,nf E = (2.179X10-18J)[(1/ ni2) -(1/nf2)] (1/nf2) = (1/ ni2) - {E / (2.179X10-18J) } (1/nf2) = (1/42) - { - 4.098X10-19J / 2.179X10-18J)} (1/nf2) = (1/16) + 0.18807 = 0.25052 nf2 = 3.99 nf = 1.99 2
The lower energy level to which the electron relaxes is n = 2.