In: Finance
GE has a 7-year, 4.5% coupon bond with semi-annual coupon payments. The current YTM is 3.5%. What is duration of this bond and how much will price change if YTM goes up by 1% using duration approximation method?
Period | Cash Flow | Present [email protected]% | Present value of Cash flow | Period X Cash flow | Period x PV of Cash Flow |
a | b | c | d=b*c | e=a*b | f=a*d |
1 | $ 22.50 | 0.9780 | 22.00 | $ 22.50 | $ 22.00 |
2 | $ 22.50 | 0.9565 | 21.52 | $ 45.00 | $ 43.04 |
3 | $ 22.50 | 0.9354 | 21.05 | $ 67.50 | $ 63.14 |
4 | $ 22.50 | 0.9148 | 20.58 | $ 90.00 | $ 82.34 |
5 | $ 22.50 | 0.8947 | 20.13 | $ 112.50 | $ 100.66 |
6 | $ 22.50 | 0.8750 | 19.69 | $ 135.00 | $ 118.13 |
7 | $ 22.50 | 0.8558 | 19.25 | $ 157.50 | $ 134.78 |
8 | $ 22.50 | 0.8369 | 18.83 | $ 180.00 | $ 150.65 |
9 | $ 22.50 | 0.8185 | 18.42 | $ 202.50 | $ 165.75 |
10 | $ 22.50 | 0.8005 | 18.01 | $ 225.00 | $ 180.11 |
11 | $ 22.50 | 0.7829 | 17.62 | $ 247.50 | $ 193.77 |
12 | $ 22.50 | 0.7657 | 17.23 | $ 270.00 | $ 206.73 |
13 | $ 22.50 | 0.7488 | 16.85 | $ 292.50 | $ 219.03 |
14 | $ 1,022.50 | 0.7323 | 748.82 | $ 14,315.00 | $ 10,483.47 |
1000 | $ 12,163.60 | ||||
Duration = Present value of a bond's cash flows, weighted by length of time to receipt and divided by the bond's current market value. | |||||
Duration=$12,163.6/$1,000= 12.16 | |||||
With a duration of 12.16 years. If market yields increased by 100 basis points (1%), the approximate percentage change in the bond's price would be: | |||||
(- Macaulay Duration x Change in Yield) = Approximate Change in Price | |||||
(- 12.16 x 1%) = 12.16% | |||||
Please do upvote if you found the answer useful. |
Feel free to reach in the comment section in case of any clarification or queries. |