Question

In: Physics

A massless pan hangs from a spring that is suspended from the ceiling. When empty, the...

A massless pan hangs from a spring that is suspended from the ceiling. When empty, the pan is 53 cm below the ceiling. If a 105 g clay ball is placed gently on the pan, the pan hangs 60 cm below the ceiling. Suppose the clay ball is dropped from the ceiling onto an empty pan. What is the pan's distance from the ceiling when the spring reaches its maximum length?

Solutions

Expert Solution

Note: Using the value of g (acceleration due to gravity) = 98 cm/s^2

Under the weight of clay ball, the spring extends by 7 cm (60 cm - 53 cm).

Balancing forces to calculate the value of k (spring constant)

Now, when the clay ball is dropped on the pan, the pan will stretch the spring untill the total kinetic energy is not converted into the potential energy. (See image)

Net height fallen by the ball = 53 cm + x cm = (53+x) cm

maximum extension in the spring = x cm

Let the potential energy at the ceiling is assumed to be zero.

Since, all the forces acting (spring + gravitation) is conservative, we can conserve mechanical energy between the initial and final configuration.

Solving, we get


Related Solutions

A massless spring hangs from the ceiling with a small object attached to its lower end....
A massless spring hangs from the ceiling with a small object attached to its lower end. The object is initially held at rest in a position yi such that the spring is at its rest length. The object is then released from yi and oscillates up and down, with its lowest position being 10 cm below yi. (a) What is the frequency of the oscillation? (b) What is the speed of the object when it is 8.1 cm below the...
A massless spring hangs from the ceiling with a small object attached to its lower end....
A massless spring hangs from the ceiling with a small object attached to its lower end. The object is initially held at rest in a position yi such that the spring is at its rest length. The object is then released from yi and oscillates up and down, with its lowest position being 14 cm below yi. (a) What is the frequency of the oscillation? Hz (b) What is the speed of the object when it is 12.0 cm below...
A spring with spring constant 14 N/m hangs from the ceiling. A ball is attached to...
A spring with spring constant 14 N/m hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 7.0 cm and released. The ball makes 29 oscillations in 25 s seconds. a) What is its the mass of the ball? b) What is its maximum speed?
A spring with spring constant 20 N/m hangs from the ceiling. A ball is attached to...
A spring with spring constant 20 N/m hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 8.5 cm and released. The ball makes 28 oscillations in 18 s seconds. A) What is its the mass of the ball?​ B) What is its maximum speed?​
A spring hangs from the ceiling. A block of 0.450 kg is tied to the other...
A spring hangs from the ceiling. A block of 0.450 kg is tied to the other end of the spring. When released from rest, the block lowers 0.150 m before momentarily reaching rest, after which it moves upwards. (1) What is the spring constant, K? (2) Calculate the angular frequency of the vibrations of the block.
A mass hangs from the ceiling by a spring. It takes the mass 700 ms to...
A mass hangs from the ceiling by a spring. It takes the mass 700 ms to fall from its maximum height of 2.3m to its minimum height of 1.6m above the floor. (a) At what height above the floor does the mass have zero acceleration? (b) What is the maximum speed of this mass? (c) If you start a timer ( t = 0) at the moment when the mass is falling below a height of 1.9m, then at what...
1. A mass weighing 10 lbs. is attached to a spring suspended from the ceiling. The...
1. A mass weighing 10 lbs. is attached to a spring suspended from the ceiling. The mass will stretch the spring 6 inches. If the mass is pulled 5 inches below its equilibrium point and given an initial upward velocity of 0.3 ft./sec. and if damping forces are neglected, then what is the equation of motion of the mass? What is the amplitude of the motion? 2. A 980-newton force stretches a spring 0.4 meters. If a 200 kg mass...
A 200 g mass hangs from a massless spring (k = 10 N/m). At t =...
A 200 g mass hangs from a massless spring (k = 10 N/m). At t = 0.0 s, the mass is 20 cm below the equilibrium point and moving upward with a speed of 100 cm/s. What is the a. oscillation frequency? b. distance from equilibrium when the speed is 50 cm/s? c. distance from equilibrium at t = 1.0 s?
1. A 50-cm-long spring is suspended from the ceiling. A 230g mass is connected to the...
1. A 50-cm-long spring is suspended from the ceiling. A 230g mass is connected to the end and held at rest with the spring unstretched. The mass is released and falls, stretching the spring by 18cm before coming to rest at its lowest point. It then continues to oscillate vertically. a. What is the spring constant? (K=) b. What is the amplitude of the oscillation? c. What is the frequency of the oscillation? 2. Suppose the free-fall accelaration at some...
**A crate with a mass of 45 kg is suspended from a massless rope that runs...
**A crate with a mass of 45 kg is suspended from a massless rope that runs vertically upward over a light pulley. The other end of the rope is connected to a 35 kg crate, which lies on a tabletop. The coefficients of the kinetic friction and the static friction between the crate and the surface are 0.3 and 0.5 respectively. An applied force, F, pulls the 35 kg crate to the right. In the first case, the applied force...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT