Question

In: Chemistry

Part A - Calculating K from Initial and Equilibrium Concentrations When 9.2 g of frozen N2O4...

Part A - Calculating K from Initial and Equilibrium Concentrations When 9.2 g of frozen N2O4 is added to a 0.50 L reaction vessel and the vessel is heated to 400 K and allowed to come to equilibrium, the concentration of N2O4 is determined to be 0.057 M. Given this information, what is the value of Kc for the reaction below at 400 K? N2O4(g) ⇌ 2 NO2(g)

Solutions

Expert Solution

Solution :-

Lwts first calculate the moles of the N2O4

Moles= mass / molar mass

Moles of N2O4 = 9.2 g /92.011 g per mol = 0.10 mol N2O4

Now lets calculate the initial concentration of the N2O4

Initial concentration of the N2O4 = 0.10 mol / 0.5 L = 0.20 M

N2O4(g)   --------- > 2 NO2(g)

0.20 M                         0

-x                                  +2x

0.20-x                          2x

0.20 –x = 0.057 M

X= 0.20 M – 0.057 M = 0.143 M

so lets calculate the equilibrium concetration of the NO2

[NO2] eq = 2x = 2*0.143 M = 0.286 M

Now lets calculate the Kc

Kc= [NO2]^2/[N2O4]

Kc = [0.286]^2/[0.057]

Kc =1.44

So the Kc = 1.44


Related Solutions

​Part A Calculating equilibrium concentrations when the net reaction proceeds forward Consider mixture B, which will...
​Part A Calculating equilibrium concentrations when the net reaction proceeds forward Consider mixture B, which will cause the net reaction to proceed forward. Concentration (M) initial: change: equilibrium: [XY] 0.500 −x 0.500−x net→ ⇌ [X] 0.100 +x 0.100+x + [Y] 0.100 +x 0.100+x The change in concentration, x , is negative for the reactants because they are consumed and positive for the products because they are produced. Based on a Kc value of 0.160 and the given data table, what...
​Part A Calculating equilibrium concentrations when the net reaction proceeds forward Consider mixture B, which will...
​Part A Calculating equilibrium concentrations when the net reaction proceeds forward Consider mixture B, which will cause the net reaction to proceed forward. Concentration (M) initial: change: equilibrium: [XY] 0.500 −x 0.500−x net→ ⇌ [X] 0.100 +x 0.100+x + [Y] 0.100 +x 0.100+x The change in concentration, x , is negative for the reactants because they are consumed and positive for the products because they are produced. Based on a Kc value of 0.160 and the given data table, what...
For the reaction shown here, Kc = 0.513 at 500 K. N2O4(g)⇌2NO2(g) Part A If a...
For the reaction shown here, Kc = 0.513 at 500 K. N2O4(g)⇌2NO2(g) Part A If a reaction vessel initially contains an N2O4 concentration of 5.50×10−2 M at 500 K, what are the equilibrium concentrations of N2O4 and NO2 at 500 K? [N2O4], [NO2] =
Consider the reaction: 2 NO2(g) → N2O4(g) Calculate ΔG (in kJ/mol) at 298°K if the equilibrium...
Consider the reaction: 2 NO2(g) → N2O4(g) Calculate ΔG (in kJ/mol) at 298°K if the equilibrium partial pressures of NO2 and N2O4 are 1.337 atm and 0.657 atm, respectively.
Calculating Equilibrium Concentrations Part A Carbonyl fluoride, COF2, is an important intermediate used in the production...
Calculating Equilibrium Concentrations Part A Carbonyl fluoride, COF2, is an important intermediate used in the production of fluorine-containing compounds. For instance, it is used to make the refrigerant carbon tetrafluoride, CF4 via the reaction 2COF2(g)⇌CO2(g)+CF4(g),    Kc=7.10 If only COF2 is present initially at a concentration of 2.00 M, what concentration of COF2 remains at equilibrium? Part B Consider the reaction CO(g)+NH3(g)⇌HCONH2(g),    Kc=0.700 If a reaction vessel initially contains only CO and NH3 at concentrations of 1.00 M and 2.00 M, respectively, what...
The half-life for the first-order decomposition of N2O4 is 1.3×10?5s. N2O4(g)?2NO2(g) Part A If N2O4 is...
The half-life for the first-order decomposition of N2O4 is 1.3×10?5s. N2O4(g)?2NO2(g) Part A If N2O4 is introduced into an evacuated flask at a pressure of 19.0 mmHg, how many seconds are required for the pressure of NO2 to reach 1.4 mmHg?
Calculating Equilibrium Concentrations The concentrations of reactants and products for a chemical reaction can be calculated...
Calculating Equilibrium Concentrations The concentrations of reactants and products for a chemical reaction can be calculated if the equilibrium constant for the reaction and the starting concentrations of reactants and/or products are known. Part A Carbonyl fluoride, COF2, is an important intermediate used in the production of fluorine-containing compounds. For instance, it is used to make the refrigerant carbon tetrafluoride, CF4 via the reaction 2COF2(g)⇌CO2(g)+CF4(g),    Kc=7.20 If only COF2 is present initially at a concentration of 2.00 M, what concentration of...
Calculating equilibrium concentrations when the net reaction proceeds forward Consider mixture B, which will cause the...
Calculating equilibrium concentrations when the net reaction proceeds forward Consider mixture B, which will cause the net reaction to proceed forward. Concentration (M)initial:change:equilibrium:[XY]0.500−x0.500−xnet→⇌[X]0.100+x0.100+x+[Y]0.100+x0.100+x The change in concentration, x, is negative for the reactants because they are consumed and positive for the products because they are produced. Part B Based on a Kc value of 0.260 and the given data table, what are the equilibrium concentrations of  XY, X, and Y, respectively? Express the molar concentrations numerically. [XY], [X], [Y] =   M  ...
Calculating equilibrium concentrations when the net reaction proceeds forward Consider mixture B, which will cause the...
Calculating equilibrium concentrations when the net reaction proceeds forward Consider mixture B, which will cause the net reaction to proceed forward. Concentration (M)initial:change:equilibrium:[XY]0.500−x0.500−xnet→⇌[X]0.100+x0.100+x+[Y]0.100+x0.100+x The change in concentration, x, is negative for the reactants because they are consumed and positive for the products because they are produced. Part B Based on a Kc value of 0.170 and the given data table, what are the equilibrium concentrations of  XY, X, and Y, respectively Calculating equilibrium concentrations when the net reaction proceeds in reverse...
Consider the equilibrium N2(g) + O2(g) ⇄ 2 NO(g) At 2300 K the equilibrium constant K...
Consider the equilibrium N2(g) + O2(g) ⇄ 2 NO(g) At 2300 K the equilibrium constant K = 1.7 × 10-3. Suppose that 0.0150 mol NO(g), 0.250 mol N2(g), and 0.250 mol O2(g) are placed into a 10.0-L flask and heated to 2300 K. The system is not at equilibrium. Determine the direction the reaction must proceed to reach equilibrium and the final equilibrium concentrations of each species. to the right to the left [N2] =____ mol/L [O2] = ____mol/L [NO]...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT