Question

In: Advanced Math

For a linear transformation between two finite-dimensional vector spaces. A) State the "Rank-Nully Theorem" for the...

For a linear transformation between two finite-dimensional vector spaces.

A) State the "Rank-Nully Theorem" for the linear transformation.

B) Prove the "Rank-Nully Theorem" you just stated in (A).

Solutions

Expert Solution


Related Solutions

Let ? and W be finite dimensional vector spaces and let ?:?→? be a linear transformation....
Let ? and W be finite dimensional vector spaces and let ?:?→? be a linear transformation. We say a linear transformation ?:?→? is a left inverse of ? if ST=I_v, where ?_v denotes the identity transformation on ?. We say a linear transformation ?:?→? is a right inverse of ? if ??=?_w, where ?_w denotes the identity transformation on ?. Finally, we say a linear transformation ?:?→? is an inverse of ? if it is both a left and right...
Question 1. Let V and W be finite dimensional vector spaces over a field F with...
Question 1. Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T] A B is a diagonal matrix where every entry along the diagonal is either a 0 or a 1. Hint 1. Suppose A = {~v1, . . . , ~vn}...
Let V and W be finite dimensional vector spaces over a field F with dimF(V )...
Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W ) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T ]AB is a diagonal matrix where every entry along the diagonal is either a 0 or a 1.
suppose that T : V → V is a linear map on a finite-dimensional vector space...
suppose that T : V → V is a linear map on a finite-dimensional vector space V such that dim range T = dim range T2. Show that V = range T ⊕null T. (Hint: Show that null T = null T2, null T ∩ range T = {0}, and apply the fundamental theorem of linear maps.)
Let T be a linear operator on a finite-dimensional complex vector space V . Prove that...
Let T be a linear operator on a finite-dimensional complex vector space V . Prove that T is diagonalizable if and only if for every λ ∈ C, we have N(T − λIV ) = N((T − λIV )2).
V and W are finite dimensional inner product spaces,T:V→W is a linear map, and∗represents the adjoint....
V and W are finite dimensional inner product spaces,T:V→W is a linear map, and∗represents the adjoint. 1A: Let n be a positive integer, and suppose that T is defined on C^n (with the usual inner product) by T(z1,z2,...,zn) = (0,z1,z2,...,zn−1). Give a formula for T*. 1B: Show that λ is an eigenvalue of T if and only if λ is an eigenvalue of T*.
V and W are finite dimensional inner product spaces,T: V→W is a linear map 1A: Give...
V and W are finite dimensional inner product spaces,T: V→W is a linear map 1A: Give an example of a map T from R2 to itself (with the usual inner product) such that〈Tv,v〉= 0 for every map. 1B: Suppose that V is a complex space. Show that〈Tu,w〉=(1/4)(〈T(u+w),u+w〉−〈T(u−w),u−w〉)+(1/4)i(〈T(u+iw),u+iw〉−〈T(u−iw),u−iw〉 1C: Suppose T is a linear operator on a complex space such that〈Tv,v〉= 0 for all v. Show that T= 0 (i.e. that Tv=0 for all v).
(3) (a) Show that every two-dimensional subspace of R3 is the kernel of some linear transformation...
(3) (a) Show that every two-dimensional subspace of R3 is the kernel of some linear transformation T : R3 → R. [Hint: there are many possible ways to approach this problem. One is to use the following fact, typically introduced in multivariable calculus: for every plane P in R3, there are real numbers a, b, c, d such that a point (x,y,z) belongs to P if and only if it satisfies the equation ax+by+cz = d. You may use this...
1. Let ? be a finite dimensional vector space with basis {?1,...,??} and ? ∈ L(?)....
1. Let ? be a finite dimensional vector space with basis {?1,...,??} and ? ∈ L(?). Show the following are equivalent: (a) The matrix for ? is upper triangular. (b) ?(??) ∈ Span(?1,...,??) for all ?. (c) Span(?1,...,??) is ?-invariant for all ?. please also explain for (a)->(b) why are all the c coefficients 0 for all i>k? and why T(vk) in the span of (v1,.....,vk)? i need help understanding this.
6a. Let V be a finite dimensional space, and let Land T be two linear maps...
6a. Let V be a finite dimensional space, and let Land T be two linear maps on V. Show that LT and TL have the same eigenvalues. 6b. Show that the result from part A is not necessarily true if V is infinite dimensional.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT