Question

In: Advanced Math

(3) (a) Show that every two-dimensional subspace of R3 is the kernel of some linear transformation...

(3) (a) Show that every two-dimensional subspace of R3 is the kernel of some linear transformation T : R3 → R. [Hint: there are many possible ways to approach this problem. One is to use the following fact, typically introduced in multivariable calculus: for every plane P in R3, there are real numbers a, b, c, d such that a point (x,y,z) belongs to P if and only if it satisfies the equation ax+by+cz = d. You may use this fact without proof here, if you like; note that it considers all planes, not just those through the origin.] (b) Are there any other sets W such that W is the kernel of some linear transformation T : R3 → R? (If not, explain why not; if so, explain why the set or sets you mention can be kernels, and why there are no others.) (c) What possibilities are there for the image im(T) of a linear transformation T : R3 → R? (d) What possibilities are there for the kernel and image of a linear transformation S : R → R3?

Solutions

Expert Solution


Related Solutions

Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) =...
Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) = (2,3,-5) and T( e⃗2 ) = (-1,0,1). Determine the standard matrix of T. Calculate T( ⃗u ), the image of ⃗u=(4,2) under T. Suppose T(v⃗)=(3,2,2) for a certain v⃗ in R2 .Calculate the image of ⃗w=2⃗u−v⃗ . 4. Find a vector v⃗ inR2 that is mapped to ⃗0 in R3.
For a linear transformation between two finite-dimensional vector spaces. A) State the "Rank-Nully Theorem" for the...
For a linear transformation between two finite-dimensional vector spaces. A) State the "Rank-Nully Theorem" for the linear transformation. B) Prove the "Rank-Nully Theorem" you just stated in (A).
Let ? and W be finite dimensional vector spaces and let ?:?→? be a linear transformation....
Let ? and W be finite dimensional vector spaces and let ?:?→? be a linear transformation. We say a linear transformation ?:?→? is a left inverse of ? if ST=I_v, where ?_v denotes the identity transformation on ?. We say a linear transformation ?:?→? is a right inverse of ? if ??=?_w, where ?_w denotes the identity transformation on ?. Finally, we say a linear transformation ?:?→? is an inverse of ? if it is both a left and right...
Write up a full proof of the fact that every k-dimensional subspace of R^n is the...
Write up a full proof of the fact that every k-dimensional subspace of R^n is the intersection of (n-k) hyperplanes. Tip: If you don't know how to start, begin by summarizing your answers to the previous problems on this lab.
Let V -Φ -> W be linear. Show that ker (Φ) is a subspace of V...
Let V -Φ -> W be linear. Show that ker (Φ) is a subspace of V and Φ (V) is a subspace of W.
A linear transformation from R3-R4 with the V set of vectors x, where T(x)=0, is V...
A linear transformation from R3-R4 with the V set of vectors x, where T(x)=0, is V a subspace of R3?
Let S be the two dimensional subspace of R^4 spanned by x = (1,0,2,1) and y...
Let S be the two dimensional subspace of R^4 spanned by x = (1,0,2,1) and y = (0,1,- 2,0) Find a basis for S^⊥
Does every linear transformation from a complex vector space to itself have an eigenvector?
Does every linear transformation from a complex vector space to itself have an eigenvector?
Let T: V →W be a linear transformation from V to W. a) show that if...
Let T: V →W be a linear transformation from V to W. a) show that if T is injective and S is a linearly independent set of vectors in V, then T(S) is linearly independent. b) Show that if T is surjective and S spans V,then T(S) spans W. Please do clear handwriting!
Show that the result of two Lorentz transformations is a single Lorentz transformation.
Show that the result of two Lorentz transformations is a single Lorentz transformation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT