Question

In: Physics

Suppose we have an infinitely long wire carrying a current of 3.5 A. It is bent...

Suppose we have an infinitely long wire carrying a current of 3.5 A. It is bent into an L-shape extending into positive infinities along the x- and y- axes. Find the magnitude of the magnetic field at a point P with coordinates (0.4 m, 0.4 m).
B = T

Solutions

Expert Solution

Solution - For an infinitely long wire, B( magnetic field) at a point at distance 0.4 m

= [ U.i / 4.(pi)d ] * ( cosa + cosb )

Here i = 3.5 amperes, U is the permittivity of free space = 4(pi) * 10^-7 , d = 0.4 m

For the wire along the X-axis, angle subtended at origin = 45 degrees.

And at infinity, angle subtended = 0 degrees

Thus, B = 3.5 * 10^-7 / 0.4 * ( cos45 + cos0)

                      = 0.875 * 10^-6 * ( cos45 + cos0 )

Similarly for the wire along the Y-axis,

B = 0.87 * 10^-6 * (cos45 + cos0)

Now, we see that B due to both the wires would in the same direction, and would algebraically add up.

thus, B (total ) = 3.5 * 10^-6 * ( cos45 + cos0 )

Putting the values of cos45 = 0.707 and cos0 = 1, we get

B = 3.5 * 10^-6 * 1.707

               = 5.9745 * 10^-6 Tesla

I hope help you !!


Related Solutions

Problem 5:   An infinitely long single wire with current I1 = 5.5 A and a rectangular...
Problem 5:   An infinitely long single wire with current I1 = 5.5 A and a rectangular wire loop with current I2 = 0.45 A are in the same plane as shown. The dimensions of the loop are a = 0.012 m and b = 0.146 m. The infinite wire is parallel to side AD of the loop and at a distance d = 0.24 m from it. 13% Part (a) Express the magnitude of the magnetic force Fad, from I1...
An infinitely long wire carries current I. Find the magnetic field due to this current. Find...
An infinitely long wire carries current I. Find the magnetic field due to this current. Find the vector potential A. Verify that your vector potential from part b produces your answer to part a.
An infinitely long single wire with current I1 = 6.5 A and a rectangular wire loop with current I2 = 0.65 A are in the same plane as shown.
Problem 7:  An infinitely long single wire with current I1 = 6.5 A and a rectangular wire loop with current I2 = 0.65 A are in the same plane as shown. The dimensions of the loop are a = 0.032 m and b = 0.173 m. The infinite wire is parallel to side AD of the loop and at a distance d = 0.17 m from it.Part (a) Express the magnitude of the magnetic force Fad, from I1 on wire...
find the field inside and outside of an infinitely long solenoid carrying a steady current I....
find the field inside and outside of an infinitely long solenoid carrying a steady current I. find the vector potential of the solenoid given in question.
A 100 meter long wire carrying a current of .4 amps into the board is at...
A 100 meter long wire carrying a current of .4 amps into the board is at (-5, 0) meters and another 100-m long wire carrying a current of .6 amps out of the board is at (+3, 0) meters. a) Find the Magnetic Force between these charges. b) Where can a third wire be placed so that it experiences no force? Where can it be placed on the x-axis so it experiences a force of magnitude 5 μN (the wire...
A long thin wire carrying a current I1 =10 A (out of page) is located at...
A long thin wire carrying a current I1 =10 A (out of page) is located at (0, 0) and another wire carrying a current I2 =8A (into the page) is located at (x=9cm, y=0). Find the magnitude and direction of the magnetic field due to these two currents at (x=0, y=12 cm). Your solution must include a neat diagram.
A long thin wire carrying a current I1 =10 A (out of page) is located at...
A long thin wire carrying a current I1 =10 A (out of page) is located at (0, 0) and another wire carrying a current I2 =8A (into the page) is located at (x=9cm, y=0). Find the magnitude and direction of the magnetic field due to these two currents at (x=0, y=12 cm). Your solution must include a neat diagram
A long, straight wire carrying a current of 3.00 A moves with a constant speed v...
A long, straight wire carrying a current of 3.00 A moves with a constant speed v to the right. A 5-turn circular coil of diameter 1.25 cm, and resistance of 3.25 µΩ, lies stationary in the same plane as the straight wire. At some initial time, the wire is at a distance d = 19.5 cm from the center of the coil. 4.55 s later, the wire is at a distance 2d from the center of the coil. What is...
A long, straight wire carrying a current I1 is placed on a horizontal table in front...
A long, straight wire carrying a current I1 is placed on a horizontal table in front of you and the direction of the current points +x axis. The magnetic field produced by the current I1 at a point 5 cm above the wire is 0.2 T. A second parallel wire carrying a current I2 = 3I1 is placed 10 cm above the first wire and the direction of the current also points +x axis. What is the magnitude of the...
Conducting Loop and Current-Carrying Wire
An infinite straight wire carries current I1 = 5.8 A in the positive y-direction as shown. At time t = 0, a conducting wire, aligned with the y-direction is located a distance d = 51 cm from the y-axis and moves with velocity v = 19 cm/s in the negative x-direction as shown. The wire has length W = 24 cm.1) What is ε(0), the emf induced in the moving wire at t = 0? Define the emf to be...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT