In: Statistics and Probability
5. A coffee shop claims that a five-ounce serving of
its fresh-brewed coffee has mean caffeine content of 80 milligrams.
A sample of 76 five-ounce servings finds mean caffeine content of
83 milligrams with a standard deviation of 12 milligrams. At the 5%
level of significance, can we show that the mean caffeine content
of all five-ounce servings is not 80 milligrams?
(a) State and test appropriate hypotheses. State conclusions.
(b) If an error was made in (a), what type was it?
(c) Find the p-vale of the test in (a).
a)
Ho :   µ =   80  
           
   
Ha :   µ ╪   80      
(Two tail test)      
   
          
           
   
Level of Significance ,    α =   
0.05          
       
sample std dev ,    s =    12.0000  
           
   
Sample Size ,   n =    76  
           
   
Sample Mean,    x̅ =   83.0000  
           
   
          
           
   
degree of freedom=   DF=n-1=   75  
           
   
          
           
   
Standard Error , SE = s/√n =   12.0000   / √
   76   =   1.3765  
   
t-test statistic= (x̅ - µ )/SE = (   83.000  
-   80   ) /    1.3765  
=   2.18
          
           
   
          
           
   
p-Value   =   0.0324   [Excel formula
=t.dist(t-stat,df) ]      
       
Decision:   p-value<α, Reject null hypothesis
          
           
Conclusion: There is enough evidence that   the mean
caffeine content of all five-ounce servings is not 80
milligrams
b)
Type 1 error
c)
p-Value = 0.0324 [Excel formula =t.dist(t-stat,df) ]
Thanks in advance!
revert back for doubt
Please upvote