In: Finance
A mobile home worth $56,000 is purchased with a down payment of $6,000 and monthly month-end payments for 15 years. If the interest rate is 9% per annum compounded monthly, determine the balance just after the 10th payment, in 2 decimal places.
Mobile home worth = $ 56000
Down payment = $ 6000
Balance Due amount = $ 56000 - $ 6000 = $ 50000
Interest rate per year = 9 %
interest rate per month = 9 % / 12 = 0.75 % or 0.0075
No. of months = 15 years * 12 = 180 months
Particulars | Amount |
Balance Due Amount | $ 50,000.00 |
Int rate per Month | 0.7500% |
No. of Months | 180 |
Equal monthly payment = Balance Due Amount / PVAF (r%, n)
Where r is Int rate per Month & n is No. of Months
= $ 50000 / PVAF (0.0075 , 180)
= $ 50000 / 98.5934
= $ 507.13
Equal monthly payment = $ 507.13
PV Annuity Factor = [ 1 - [(1+r)^-n]] /r
= [ 1 - [(1+0.0075)^-180]] /0.0075
= [ 1 - [(1.0075)^-180]] /0.0075
= [ 1 - [0.26055]] /0.0075
= [0.73945]] /0.0075
= 98.5934
Period | Opening Bal | Monthly payment | Int | Principal Repay | Closing Outstanding |
1 | $ 50,000.00 | $ 507.13 | $ 375.00 | $ 132.13 | $ 49,867.87 |
2 | $ 49,867.87 | $ 507.13 | $ 374.01 | $ 133.12 | $ 49,734.74 |
3 | $ 49,734.74 | $ 507.13 | $ 373.01 | $ 134.12 | $ 49,600.62 |
4 | $ 49,600.62 | $ 507.13 | $ 372.00 | $ 135.13 | $ 49,465.49 |
5 | $ 49,465.49 | $ 507.13 | $ 370.99 | $ 136.14 | $ 49,329.35 |
6 | $ 49,329.35 | $ 507.13 | $ 369.97 | $ 137.16 | $ 49,192.19 |
7 | $ 49,192.19 | $ 507.13 | $ 368.94 | $ 138.19 | $ 49,053.99 |
8 | $ 49,053.99 | $ 507.13 | $ 367.90 | $ 139.23 | $ 48,914.77 |
9 | $ 48,914.77 | $ 507.13 | $ 366.86 | $ 140.27 | $ 48,774.49 |
10 | $ 48,774.49 | $ 507.13 | $ 365.81 | $ 141.32 | $ 48,633.17 |
11 | $ 48,633.17 | $ 507.13 | $ 364.75 | $ 142.38 | $ 48,490.78 |
12 | $ 48,490.78 | $ 507.13 | $ 363.68 | $ 143.45 | $ 48,347.33 |
Balance after 10th Payment = $ 48,633.17
Please comment if any further explanation is required.