Question

In: Finance

You buy a stock at $200 and buy an at-the-money 8-month European put option on the...

You buy a stock at $200 and buy an at-the-money 8-month European put option on the stock at a price of $15. The continuously compounded risk-free interest rate is 4%. Calculate the 8-month profit if the 8-month stock price is $180.

Solutions

Expert Solution

Long on Stock = 200

European Put Option (At the money) Strike Price = 200

European Put Option Premium Paid = (15)

Stock price at expiration = 180

Loss on Stock = Stock Price after 8 months - Stock price at time of purchase=  200-180 = 20

Gain on Put Option = Strike price - Stock Price at expiration = 200-180= 20

Future Value of Premium Paid = Premium Paid * (1+(int%*8/12)) = 15 * (1+ (4%*8/12))

Future Value of Premium Paid = 15 * (1.026667)

Future Value of Premium Paid = 15.4

Total Profit / Loss = Gain/loss on stock + Gain/Loss on Put Option - Value of premium paid on 8th Month

Total Profit / Loss = -20 + 20 - 15.4

Total Loss = $-15.4


Related Solutions

You buy a European call option for a stock. The premium paud for this put option...
You buy a European call option for a stock. The premium paud for this put option is $15. The pricd is $200. You are now at the maturity of this option. (a) If the price at maturity is $210, what is the optimal decision? Calculate and explain possible choices. (b) What are the profits/losses for the seller of this option? Explain. (c) What is the breakeven point? Explain.
Calculate the value of an 8-month European put option on a currency with a strike price...
Calculate the value of an 8-month European put option on a currency with a strike price of 0.60. The current exchange rate is 0.62, the volatility of the exchange rate is 14%, the domestic and foreign risk-free interest rates are 3% and 5% respectively.
1.The price of a three-month European put option on a stock with a strike price of...
1.The price of a three-month European put option on a stock with a strike price of $60 is $5. There is a $1.0067 dividend expected in one month. The current stock price is $58 and the continuously compounded risk-free rate (all maturities) is 8%. What is the price of a three-month European call option on the same stock with a strike price of $60? Select one: a. $5.19 b. $1.81 c. $2.79 d. $3.19 2.For the above question, if the...
A nine-month European put option on a dividend-paying stock is currently selling for $2. The stock...
A nine-month European put option on a dividend-paying stock is currently selling for $2. The stock price is $25, the strike price is $27, and the risk-free interest rate is 7% per annum. The stock is expected to pay a dividend of $1 one month later and another dividend of $1 seven months later. Explain the arbitrage opportunities available to the arbitrageur by demonstrating what would happen under different scenarios.
A nine-month European put option on a dividend-paying stock is currently selling for $2. The stock...
A nine-month European put option on a dividend-paying stock is currently selling for $2. The stock price is $25, the strike price is $27, and the risk-free interest rate is 7% per annum. The stock is expected to pay a dividend of $1 one month later and another dividend of $1 seven months later. Explain the arbitrage opportunities available to the arbitrageur by demonstrating what would happen under different scenarios.
A ten-month European put option on a dividend-paying stock is currently selling for $4. The stock...
A ten-month European put option on a dividend-paying stock is currently selling for $4. The stock price is $40, the strike price is $43, and the risk-free interest rate is 6% per annum. The stock is expected to pay a dividend of $2 two months later and another dividend of $2 eight months later. Explain the arbitrage opportunities available to the arbitrageur by demonstrating what would happen under different scenarios.
A four-month European put option on a dividend-paying stock is currently selling for $3. The stock...
A four-month European put option on a dividend-paying stock is currently selling for $3. The stock price is $41, the strike price is $45, and a dividend of $0.80 is expected in two month. The risk-free interest rate is 8% per annum for all maturities. What opportunities are there for an arbitrageur? Show the cash flow table.
A stock currently sells for $50.00. A 3-month European put option with a strike of $48.00...
A stock currently sells for $50.00. A 3-month European put option with a strike of $48.00 has a premium of $1.25. The stock has a 3% continuous dividend. The continuously compounded risk-free interest rate is 5%. Suppose you observe the price of the associated call to be $3.1. Give a portfolio that can be used to take advantage of the arbitrage opportunity, and show that the portfolio that you give is an arbitrage portfolio.
A European call option on Visa stock costs $85.36, while a European put option on the...
A European call option on Visa stock costs $85.36, while a European put option on the same stock costs $31. Both options expire in 0.5 years and have a strike price of 800. Google does not pay dividends and its stock price is $850. What should be the risk-ree rate (effective annual rate)?
A three-month European put option on a non-dividend-paying stock is currently selling for $3. The stock...
A three-month European put option on a non-dividend-paying stock is currently selling for $3. The stock price is $20, the strike price is $25, and the risk-free interest rate is 5% per annum. Is there an arbitrage opportunity? Show the arbitrage transactions now and in three months.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT