In: Finance
Consider the following information about Stocks I and II: |
Rate of Return if State Occurs | |||||||||
State of | Probability of | ||||||||
Economy | State of Economy | Stock I | Stock II | ||||||
Recession | .26 | .05 | − | .31 | |||||
Normal | .50 | .22 | .11 | ||||||
Irrational exuberance | .24 | .05 | .51 | ||||||
The market risk premium is 5 percent, and the risk-free rate is 3 percent. The standard deviation on Stock I's expected return is______percent, and the Stock I beta is_____.The standard deviation on Stock II's expected return is______percent, and the Stock II beta is ______.Therefore, based on the stock's systematic risk/beta, Stock one is "riskier". |
Stock I:
Expected return=E= sum of( probability*returns of state)
=.26*.05+.5*.22+.24*.05 =.135= 13.5%
Variance= sum of ( probability*(E-returns)^2)
=.26*(.135-.05)^2+.5*(.135-.22)^2+.24*(.135-.05)^2
=.007225
Std dev= sqrt(variance)= sqrt(.007225)=.085=8.5%
Expected return =risk free rate+beta*(market risk premium)
13.5=3+beta*5
beta=10.5/5=2.1
-
Stock II:
Expected return=E= sum of( probability*returns of state)
=.26*.31+.5*.11+.24*.51=.258= 25.8%
Variance= sum of ( probability*(E-returns)^2)
=.26*(.258-.31)^2+.5*(.258-.11)^2+.24*(.258-.51)^2
=.026896
Std dev= sqrt(variance)= sqrt(0.026896)=.164=16.4%
Expected return =risk free rate+beta*(market risk premium)
25.8=3+beta*5
beta=22.8/5=4.56