Question

In: Physics

A 7 μC charge is at the origin. Another particle, placed at x = 0.2m feels...

A 7 μC charge is at the origin. Another particle, placed at x = 0.2m feels of force of 11N in the negative x-direction.

a) Find the value of the unknown charge.

b) Find the electric field midway between these two charges.

c) Find the potential midway between these two charges.

d) Find the potential energy of this pair of charges.

Solutions

Expert Solution


Related Solutions

A 3.4 μC charge is placed at the origin of coordinates, and a -2.6 μC charge...
A 3.4 μC charge is placed at the origin of coordinates, and a -2.6 μC charge is placed to the x axis at 5.0 cm . 1)Find the location of the place(s) along the x axis where the electric field due to these two charges is zero. Express your answer(s) using two significant figures. If there is more than one answer, enter each answer separated by a comma. 2)Find the location of the place(s) along the x axis where the...
A 3.4 μC charge is placed at the origin of coordinates, and a -2.6 μC charge...
A 3.4 μC charge is placed at the origin of coordinates, and a -2.6 μC charge is placed to the x axis at 2.5 cm . Find the location of the place(s) along the x axis where the electric field due to these two charges is zero. Find the location of the place(s) along the x axis where the electric potential due to these two charges is zero.
1) a) A charge of +5.00 nC is placed at the origin, and another charge of...
1) a) A charge of +5.00 nC is placed at the origin, and another charge of -3.00 nC is placed 2.5 cm west of origin, what is the electric potential at 3 cm east from origin? b) Repeat a) at distance 5 cm north of origin. c) Find the work done to bring another charge of -5.00 nC from infinity to the point at 3 cm east from origin. with the same three capacitors in parallel. How is this different...
Two charges are placed on the x axis, +5 μC at the origin and −10 μC...
Two charges are placed on the x axis, +5 μC at the origin and −10 μC at x = 5 cm. (a) Find the electric field on the x axis at x = 3 cm. N C x̂ (b) At what point on the x axis is the electric field zero? cm
A particle of charge -q1 is at the origin of an x axis. (a) At what...
A particle of charge -q1 is at the origin of an x axis. (a) At what location on the axis should a particle of charge -36q1 be placed so that the net electric field is zero at x = 4.8 mm on the axis? (b) If, instead, a particle of charge +36q1 is placed at that location, what is the direction (relative to the positive direction of the x axis) of the net electric field at x = 4.8 mm?
Three point charges are placed on the x-axis. A charge of +2.0 μC is placed at...
Three point charges are placed on the x-axis. A charge of +2.0 μC is placed at the origin, -2.0 μC to the right at x = 50 cm, and +4.0 μC at the 100 cm mark. What are the magnitude and direction of the electrostatic force which acts on the charge at the origin?
Positive charge A of charge 0.1 mC is placed at the origin of axis x, charge...
Positive charge A of charge 0.1 mC is placed at the origin of axis x, charge B, also positive, but of magnitude 4 times greater than A is placed at x=24.3 cm. These charges if released will run away from each other, but they are kept in place by the third charge positioned somewhere on the axis x. Find the value of this third charge (in mC).
In the figure particle 1 of charge q1 = 0.93 μC and particle 2 of charge...
In the figure particle 1 of charge q1 = 0.93 μC and particle 2 of charge q2 = -2.96 μC, are held at separation L = 9.5 cm on an x axis. If particle 3 of unknown charge q3 is to be located such that the net electrostatic force on it from particles 1 and 2 is zero, what must be the (a)x and (b)y coordinates of particle 3?
A test charge of +3.00 μC is placed halfway between a charge of +8.00 μC and...
A test charge of +3.00 μC is placed halfway between a charge of +8.00 μC and another of +5.00 μC separated by 10.00 cm. (a) What is the magnitude of the force on the test charge? (b) What is the direction of this force (away from or toward the +8.00 μC charge)?
A +7.50 μC point charge is sitting at the origin.
A +7.50 μC point charge is sitting at the origin. What is the radial distance between the 500 V equipotential surface and the 1000 V surface? What is the distance between the 1000 V surface and the 1500 V surface?  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT