Question

In: Physics

Part A) When monochromatic UV light of wavelength 347 nm is sent through a diffraction grating,...

Part A) When monochromatic UV light of wavelength 347 nm is sent through a diffraction grating, the first order maximum occurs at 17.9o. How many lines per cm are in the grating?

Part B) Through what voltage should an electron be accelerated from rest so that it would produce the same interference pattern as this light.

Please answer both parts and show work.

Solutions

Expert Solution

Part A)

The number of lines per cm in the grating can be determined as follows.

Wavelength of the light is

The angle of the first order maximum is

The condition for maximum of interference pattern is,

      

Here, d is the slit spacing, m is the order of the pattern, and is wavelength.

Rearrange the equation for d.

    

    

Therefore, the number of lines per cm in the grating is,

     

Part B)

The voltage through which voltage electron be accelerated to get same interference pattern can be determined as follows.

The energy of the light of wavelength is,

         

The energy of the electron in terms of voltage is,

Here, e is the charge, V0 is the potential difference, h is the plank's constant, c is the speed of light, and is wavelength.

Rearrange the equation for V0 .

Therefore, the voltage is 3.6 V.


Related Solutions

A diffraction grating is illuminated first with red light of wavelength 600 nm and then with...
A diffraction grating is illuminated first with red light of wavelength 600 nm and then with light of an unknown wavelength. The fifth-order maximum of the unknown wavelength is located exactly at the third-order maximum of the red light. What is the unknown wavelength?
Laser light from argon ion laser of wavelength 488.0 nm passes through a diffraction grating. The...
Laser light from argon ion laser of wavelength 488.0 nm passes through a diffraction grating. The first bright spots occur at an angle 6.726 degree left and right from the central maximum. How many additional pares of bright spots are there beyond the first bright spots?
In a diffraction grating experiment, green light of wavelength  λ = 533 nm is directed on a...
In a diffraction grating experiment, green light of wavelength  λ = 533 nm is directed on a diffraction grating that has N = 577 /mm lines. The diffraction pattern is projected on a screen that's located 172.5 (cm from the grating. Find the distance  between the first bright fringe and third dark fringe on the screen. your answer should be in SI units (meters) This is a diffraction grating problem, you can not use the approximation
1) The light shining on a diffraction grating has a wavelength of 477 nm (in vacuum)....
1) The light shining on a diffraction grating has a wavelength of 477 nm (in vacuum). The grating produces a second-order bright fringe whose position is defined by an angle of 9.71°. How many lines per centimeter does the grating have? 2) The wavelength of the laser beam used in a compact disc player is 566 nm. Suppose that a diffraction grating produces first-order tracking beams that are 1.1 mm apart at a distance of 3.1 mm from the grating....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 620 nm ....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 620 nm . Part B What is the angle of each diffraction order? Enter your answers using two significant figures in ascending order separated by commas.
A 500 lines per mm diffraction grating is illuminated by light of wavelength 640 nm. 1....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 640 nm. 1. What is the maximum diffraction order seen? Express your answer as an integer. 2. What is the angle of each diffraction order starting from zero diffraction order to the maximum visible diffraction order? Enter your answers in degrees in ascending order separated by commas.
A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm....
A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm. What are the angles of the first two diffraction orders? Answer = ∘,∘
A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm....
A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm. What are the angles of the first two diffraction orders? Answer = ∘,∘
Diffraction grating produces its third-order bright band at an angle of 79.4 ∘ for light of wavelength 791 nm ....
Diffraction grating produces its third-order bright band at an angle of 79.4 ∘ for light of wavelength 791 nm . Part A Find the number of slits per centimeter for the grating. n =  Part B Find the angular location of the first-order bright band. θ1 =  Part C Find the angular location of the second-order bright band. θ2 =  Part D Will there be a fourth-order bright band?
Blue light of wavelength 470 nm passes through an interference grating with a slit spacing of0.001...
Blue light of wavelength 470 nm passes through an interference grating with a slit spacing of0.001 mm and makes an interference pattern on the wall. How many bright fringes will be seen?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT