Question

In: Physics

Blue light of wavelength 470 nm passes through an interference grating with a slit spacing of0.001...

Blue light of wavelength 470 nm passes through an interference grating with a slit spacing of0.001 mm and makes an interference pattern on the wall.

How many bright fringes will be seen?

Solutions

Expert Solution


Related Solutions

Light with a wavelength of 616 nm passes through a slit 7.74 μm wide and falls...
Light with a wavelength of 616 nm passes through a slit 7.74 μm wide and falls on a screen 1.90 m away. Q : Find the linear distance on the screen from the central bright fringe to the first bright fringe above it.
Laser light from argon ion laser of wavelength 488.0 nm passes through a diffraction grating. The...
Laser light from argon ion laser of wavelength 488.0 nm passes through a diffraction grating. The first bright spots occur at an angle 6.726 degree left and right from the central maximum. How many additional pares of bright spots are there beyond the first bright spots?
Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that...
Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that are 0.020 mm apart and 1.60 m from a screen. (a) What is the angular position of the second-order minimum (dark spot)? (b) What is the distance on the screen between the central maximum and the second-order minimum? (c) The reason there is a dark spot at this location on the screen is because light from one slit has to travel further than light...
(1A) Light of wavelength 534.0 nm illuminates a double slit, and the interference pattern is observed...
(1A) Light of wavelength 534.0 nm illuminates a double slit, and the interference pattern is observed on a screen. At the position of the m = 82.0 bright fringe, how much farther is it to the more distant slit than to the nearer slit? (1B) Light from a sodium lamp of wavelength 446.0 nm illuminates two narrow slits. The fringe spacing on a screen 137.8 cm behind the slits is 6.21 mm. What is the spacing between the two slits?...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an interference pattern on the screen at a distance L from the slits. What statement is true for the resulting interference pattern if the frequency of the light increases? OPTIONS: The distance between maxima stays the same.T he distance between maxima increases. The distance between maxima decreases. Not enough information given.
Visible light passes through a diffraction grating that has 900 slits per centimeter, and the interference...
Visible light passes through a diffraction grating that has 900 slits per centimeter, and the interference pattern is observed on a screen that is 2.80m from the grating. In the first-order spectrum, maxima for two different wavelengths are separated on the screen by 3.10mm . What is the difference between these wavelengths? in meters
Light of unknown wavelength passes through a double slit, yielding both double slit and diffraction patterns...
Light of unknown wavelength passes through a double slit, yielding both double slit and diffraction patterns on a screen that is 1 m away from the slits. You see that the 9th double-slit maximum coincides with the 2nd single-slit diffraction minimum. You also observe that the first diffraction minimum is located 3 cm from the central axis on the screen. (a) What is the ratio of double-slit separation to single slit width, d/a? (b) If d = 72 µm, what...
Light with wavelength λ is incident on a double slit with spacing d. A pattern is...
Light with wavelength λ is incident on a double slit with spacing d. A pattern is observed on a screen which is far from the slits (compared to the separation between the slits). a.) Explain whether each of the following is correct or not. 1.) The pattern looks like a wave with bright fringes separated by a distance λ. 2.) The pattern looks like a wave with bright fringes separated by distance d. 3.) The pattern looks like a wave...
Suppose a certain wavelength of light falls on a diffraction grating and creates an interference pattern....
Suppose a certain wavelength of light falls on a diffraction grating and creates an interference pattern. What happens to the interference pattern if the same light falls on a grating that has more lines per centimeter? What happens to the interference pattern if a longer-wavelength light falls on the same grating? Suppose a feather appears green but has no green pigment. Explain in terms of diffraction. Why is the index of refraction always greater than or equal to 1? Draw...
A diffraction grating is illuminated first with red light of wavelength 600 nm and then with...
A diffraction grating is illuminated first with red light of wavelength 600 nm and then with light of an unknown wavelength. The fifth-order maximum of the unknown wavelength is located exactly at the third-order maximum of the red light. What is the unknown wavelength?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT