In: Finance
Bond Valuation and Interest Rate Risk
The Garraty Company has two bond issues outstanding. Both bonds pay $100 annual interest plus $1,000 at maturity. Bond L has a maturity of 15 years, and Bond S has a maturity of 1 year.
Bond L: $
Bond S: $
Bond L: $
Bond S: $
Bond L: $
Bond S: $
a
Bond L |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =15 |
Bond Price =∑ [(10*1000/100)/(1 + 6/100)^k] + 1000/(1 + 6/100)^15 |
k=1 |
Bond Price = 1388.49 |
Bond S |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =1 |
Bond Price =∑ [(10*1000/100)/(1 + 6/100)^k] + 1000/(1 + 6/100)^1 |
k=1 |
Bond Price = 1037.74 |
b
Bond L |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =15 |
Bond Price =∑ [(10*1000/100)/(1 + 9/100)^k] + 1000/(1 + 9/100)^15 |
k=1 |
Bond Price = 1080.61 |
Bond S |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =1 |
Bond Price =∑ [(10*1000/100)/(1 + 9/100)^k] + 1000/(1 + 9/100)^1 |
k=1 |
Bond Price = 1009.17 |
c
Bond L |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =15 |
Bond Price =∑ [(10*1000/100)/(1 + 11/100)^k] + 1000/(1 + 11/100)^15 |
k=1 |
Bond Price = 928.09 |
Bond S |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =1 |
Bond Price =∑ [(10*1000/100)/(1 + 11/100)^k] + 1000/(1 + 11/100)^1 |
k=1 |
Bond Price = 990.99 |