In: Chemistry
An electron confined to a one-dimensional box has energy levels given by the equation
En=n2h2/8mL2
where n is a quantum number with possible values of 1,2,3,…,m is
the mass of the particle, and L is the length of the box.
Part a
Calculate the energies of the n=1,n=2, and n=3 levels for an
electron in a box with a length of 355 pm .
Enter your answers separated by a comma.
Part b
Calculate the wavelength of light required to make a transition
from n=1→n=2 and from n=2→n=3.
Enter your answers separated by a comma.
part A )
E = n^2 h^2 / 8 m L^2
a) n = 1
h = 6.626 x 10^-34 J s
L = 355 pm = 355 x 10^-12 m
mass of the electron = 9.10 x 10^-31 kg
E = n^2 h^2 / 8 m L^2
= 1^2 x (6.626 x 10^-34)^2 / 8 x (9.10 x 10^-31) x (355 x 10^-12)^2
E = 4.78 x 10^-19 J
n = 2
E = 2^2 x (6.626 x 10^-34)^2 / 8 x (9.10 x 10^-31) x (355 x 10^-12)^2
E = 1.91 x 10^-18 J
n= 3
E = 3^2 x (6.626 x 10^-34)^2 / 8 x (9.10 x 10^-31) x (355 x 10^-12)^2
E = 4.31 x 10^-18 J
part b )
n = 1 ----------> n= 2
E = (n22-n12) h2 / 8 m L2
E = (2^2 - 1^1) x (6.626 x 10^-34)^2 / 8 x (9.10 x 10^-31) x (355 x 10^-12)^2
E = 1.434 x 10^-18 J
E = hc /
= h c / E
= (6.626 x 10^-34) x ( 3 x 10^8) / (1.434 x 10^-18)
= 1 .386 x 10^-7 m
= 138.6 x 10^-9 m
= 138.6 nm
wave length = 138.6 nm
n = 2 ----------> n= 3
E = (n22-n12) h2 / 8 m L2
E = (3^2 - 2^2) x (6.626 x 10^-34)^2 / 8 x (9.10 x 10^-31) x (355 x 10^-12)^2
E = 2.393 x 10^-18 J
E = hc /
= h c / E
= (6.626 x 10^-34) x ( 3 x 10^8) / (2.393 x 10^-18)
= 8.307 x 10^-8 m
= 83.07 x 10^-9 m
= 83.07 nm
wave length = 83.07 nm